По условию задачи, необходимо найти, на сколько масса первого тела больше массы второго тела.
Из графика зависимости потенциальной энергии от высоты находим:
Потенциальная энергия тела определяется формулой: $$E_п = mgh$$, где $$m$$ - масса тела, $$g$$ - ускорение свободного падения, $$h$$ - высота над уровнем отсчета.
Выразим массу тела из формулы потенциальной энергии: $$m = \frac{E_п}{gh}$$.
Вычислим массу первого тела: $$m_1 = \frac{E_{п1}}{gh_1} = \frac{6 \text{ Дж}}{10 \frac{\text{м}}{\text{с}^2} \cdot 10 \text{ м}} = 0.06 \text{ кг}$$.
Вычислим массу второго тела: $$m_2 = \frac{E_{п2}}{gh_2} = \frac{3 \text{ Дж}}{10 \frac{\text{м}}{\text{с}^2} \cdot 10 \text{ м}} = 0.03 \text{ кг}$$.
Определим разницу масс: $$Δm = m_1 - m_2 = 0.06 \text{ кг} - 0.03 \text{ кг} = 0.03 \text{ кг}$$.
Переведем килограммы в граммы: $$0.03 \text{ кг} = 30 \text{ г}$$.
Ответ: на 30 г.