a) $$10x^2 + 5x - 5 = 0$$
a = 10, b = 5, c = -5
$$D = 5^2 - 4 \cdot 10 \cdot (-5) = 25 + 200 = 225$$
$$x_1 = \frac{-5 + \sqrt{225}}{2 \cdot 10} = \frac{-5 + 15}{20} = \frac{10}{20} = \frac{1}{2} = 0,5$$
$$x_2 = \frac{-5 - \sqrt{225}}{2 \cdot 10} = \frac{-5 - 15}{20} = \frac{-20}{20} = -1$$
Ответ: x₁ = 0,5, x₂ = -1
б) $$-2x^2 + 12x - 18 = 0$$
a = -2, b = 12, c = -18
$$D = 12^2 - 4 \cdot (-2) \cdot (-18) = 144 - 144 = 0$$
$$x = \frac{-12 \pm \sqrt{0}}{2 \cdot (-2)} = \frac{-12}{-4} = 3$$
Ответ: x = 3
в) $$x^2 - 2x - 4 = 0$$
a = 1, b = -2, c = -4
$$D = (-2)^2 - 4 \cdot 1 \cdot (-4) = 4 + 16 = 20$$
$$x_1 = \frac{2 + \sqrt{20}}{2 \cdot 1} = \frac{2 + 2\sqrt{5}}{2} = 1 + \sqrt{5}$$
$$x_2 = \frac{2 - \sqrt{20}}{2 \cdot 1} = \frac{2 - 2\sqrt{5}}{2} = 1 - \sqrt{5}$$
Ответ: x₁ = 1 + √5, x₂ = 1 - √5
г) $$12x^2 - 12 = 0$$
$$12x^2 = 12$$
$$x^2 = 1$$
$$x_1 = 1$$
$$x_2 = -1$$
Ответ: x₁ = 1, x₂ = -1