a) \(\frac{y^2}{y+3} = \frac{y}{y+3}\)
ОДЗ: \(y
eq -3\)
\(y^2 = y\)
\(y^2 - y = 0\)
\(y(y-1) = 0\)
\(y_1 = 0\)
\(y_2 = 1\)
б) \(\frac{x^2}{x^2-4} = \frac{5x - 6}{x^2-4}\)
ОДЗ: \(x
eq \pm 2\)
\(x^2 = 5x - 6\)
\(x^2 - 5x + 6 = 0\)
По теореме Виета:
\(x_1 + x_2 = 5\)
\(x_1 \cdot x_2 = 6\)
\(x_1 = 2\) не подходит, т.к. не входит в ОДЗ
\(x_2 = 3\)
в) \(\frac{2x^2}{x-2} = \frac{-7x+6}{2-x}\)
ОДЗ: \(x
eq 2\)
\(\frac{2x^2}{x-2} = -\frac{-7x+6}{x-2}\)
\(2x^2 = 7x - 6\)
\(2x^2 - 7x + 6 = 0\)
\(D = (-7)^2 - 4 \cdot 2 \cdot 6 = 49 - 48 = 1\)
\(x_1 = \frac{7 + \sqrt{1}}{2 \cdot 2} = \frac{8}{4} = 2\) не подходит, т.к. не входит в ОДЗ
\(x_2 = \frac{7 - \sqrt{1}}{2 \cdot 2} = \frac{6}{4} = 1.5\)
г) \(\frac{y^2 - 6y}{y-5} = \frac{5}{5-y}\)
ОДЗ: \(y
eq 5\)
\(\frac{y^2 - 6y}{y-5} = -\frac{5}{y-5}\)
\(y^2 - 6y = -5\)
\(y^2 - 6y + 5 = 0\)
По теореме Виета:
\(y_1 + y_2 = 6\)
\(y_1 \cdot y_2 = 5\)
\(y_1 = 1\)
\(y_2 = 5\) не подходит, т.к. не входит в ОДЗ
д) \(\frac{2x - 1}{x+7} = \frac{3x + 4}{x-1}\)
ОДЗ: \(x
eq -7, x
eq 1\)
\((2x - 1)(x-1) = (3x + 4)(x+7)\)
\(2x^2 - 2x - x + 1 = 3x^2 + 21x + 4x + 28\)
\(2x^2 - 3x + 1 = 3x^2 + 25x + 28\)
\(x^2 + 28x + 27 = 0\)
По теореме Виета:
\(x_1 + x_2 = -28\)
\(x_1 \cdot x_2 = 27\)
\(x_1 = -1\) не подходит, т.к. не входит в ОДЗ
\(x_2 = -27\)
е) \(\frac{2y + 3}{2y - 1} = \frac{y-5}{y+3}\)
ОДЗ: \(y
eq \frac{1}{2}, y
eq -3\)
\((2y + 3)(y+3) = (y-5)(2y-1)\)
\(2y^2 + 6y + 3y + 9 = 2y^2 - y - 10y + 5\)
\(2y^2 + 9y + 9 = 2y^2 - 11y + 5\)
\(20y = -4\)
\(y = -\frac{1}{5}\)
ж) \(\frac{5y + 1}{y + 1} = \frac{y+2}{y}\)
ОДЗ: \(y
eq -1, y
eq 0\)
\((5y + 1)y = (y+2)(y+1)\)
\(5y^2 + y = y^2 + y + 2y + 2\)
\(4y^2 - 2y - 2 = 0\)
\(2y^2 - y - 1 = 0\)
\(D = (-1)^2 - 4 \cdot 2 \cdot (-1) = 1 + 8 = 9\)
\(y_1 = \frac{1 + \sqrt{9}}{2 \cdot 2} = \frac{4}{4} = 1\)
\(y_2 = \frac{1 - \sqrt{9}}{2 \cdot 2} = \frac{-2}{4} = -\frac{1}{2}\)
з) \(\frac{1+3x}{1-2x} = \frac{5-3x}{1+2x}\)
ОДЗ: \(x
eq \pm \frac{1}{2}\)
\((1+3x)(1+2x) = (5-3x)(1-2x)\)
\(1 + 2x + 3x + 6x^2 = 5 - 10x - 3x + 6x^2\)
\(1 + 5x = 5 - 13x\)
\(18x = 4\)
\(x = \frac{2}{9}\)
и) \(\frac{x-1}{2x+3} - \frac{2x - 1}{3-2x} = 0\)
ОДЗ: \(x
eq -\frac{3}{2}, x
eq \frac{3}{2}\)
\(\frac{x-1}{2x+3} = \frac{2x - 1}{3-2x} \)
\((x-1)(3-2x) = (2x - 1)(2x+3)\)
\(3x - 2x^2 - 3 + 2x = 4x^2 + 6x - 2x - 3\)
\(- 2x^2 + 5x - 3 = 4x^2 + 4x - 3\)
\(6x^2 - x = 0\)
\(x(6x - 1) = 0\)
\(x_1 = 0\)
\(x_2 = \frac{1}{6}\)
Ответ: a) \(y_1=0, y_2=1\); б) \(x=3\); в) \(x=1.5\); г) \(y=1\); д) \(x=-27\); е) \(y=-\frac{1}{5}\); ж) \(y_1=1, y_2=-\frac{1}{2}\); з) \(x=\frac{2}{9}\); и) \(x_1=0, x_2=\frac{1}{6}\)