Вопрос:

1. Найдите на рисунке пары равных углов и докажите их равенство. 2. В равнобедренном треугольнике основание в два раза меньше боковой стороны, а периметр равен 50 см. Найдите стороны треугольника.

Смотреть решения всех заданий с листа

Ответ:

Решение задания №1

Краткое пояснение: В данном задании необходимо найти пары равных углов на рисунке и доказать их равенство. Так как стороны KL=MN и KN=LM, то KLMN - параллелограмм. В параллелограмме противоположные стороны равны.

Рассмотрим рисунок. Так как KL=MN и KN=LM, то KLMN - параллелограмм (по определению). В параллелограмме противоположные стороны равны и противоположные углы равны. Значит углы ∠LKN = ∠LMN, ∠KLM = ∠KNM.

Рассмотрим треугольники ΔLKN и ΔLMN. KN = LM, KL = MN (по условию). LN - общая сторона. Следовательно, ΔLKN = ΔLMN (по трем сторонам). Из равенства треугольников следует равенство углов: ∠KLN = ∠MNL, ∠LNK = ∠NLM.

Решение задания №2

Краткое пояснение: В этой задаче нам дано, что треугольник равнобедренный, основание в два раза меньше боковой стороны, а периметр равен 50 см. Нужно найти стороны треугольника.

Пусть x - длина основания треугольника, тогда 2x - длина боковой стороны. Так как треугольник равнобедренный, то обе боковые стороны равны 2x.

Периметр треугольника - это сумма длин всех его сторон. Следовательно, периметр равен x + 2x + 2x = 5x.

По условию периметр равен 50 см. Получаем уравнение: 5x = 50.

Решаем уравнение: x = 50 / 5 = 10.

Значит, основание треугольника равно 10 см, а боковая сторона равна 2 * 10 = 20 см.

Ответ: Основание - 10 см, боковые стороны - 20 см.

Проверка за 10 секунд: Убедись, что сумма всех сторон треугольника равна периметру: 10 + 20 + 20 = 50 см.

Доп. профит: Редфлаг: Всегда проверяй, что сумма двух сторон треугольника больше третьей стороны (правило треугольника). В данном случае: 20 + 20 > 10 и 20 + 10 > 20, что верно.

ГДЗ по фото 📸
Подать жалобу Правообладателю