Решение:
Чтобы найти первые пять членов геометрической прогрессии, будем использовать формулу: bₙ = b₁ * q^(n-1), где b₁ – первый член, q – знаменатель, n – номер члена.
а) b₁ = 6, q = 2:
- b₁ = 6
- b₂ = 6 * 2^(2-1) = 6 * 2 = 12
- b₃ = 6 * 2^(3-1) = 6 * 4 = 24
- b₄ = 6 * 2^(4-1) = 6 * 8 = 48
- b₅ = 6 * 2^(5-1) = 6 * 16 = 96
б) b₁ = -24, q = -1,5:
- b₁ = -24
- b₂ = -24 * (-1.5)^(2-1) = -24 * (-1.5) = 36
- b₃ = -24 * (-1.5)^(3-1) = -24 * 2.25 = -54
- b₄ = -24 * (-1.5)^(4-1) = -24 * (-3.375) = 81
- b₅ = -24 * (-1.5)^(5-1) = -24 * 5.0625 = -121.5
в) b₁ = -16, q = 1/2:
- b₁ = -16
- b₂ = -16 * (1/2)^(2-1) = -16 * (1/2) = -8
- b₃ = -16 * (1/2)^(3-1) = -16 * (1/4) = -4
- b₄ = -16 * (1/2)^(4-1) = -16 * (1/8) = -2
- b₅ = -16 * (1/2)^(5-1) = -16 * (1/16) = -1
г) b₁ = 0.4, q = √2:
- b₁ = 0.4
- b₂ = 0.4 * (√2)^(2-1) = 0.4 * √2 ≈ 0.5657
- b₃ = 0.4 * (√2)^(3-1) = 0.4 * 2 = 0.8
- b₄ = 0.4 * (√2)^(4-1) = 0.4 * 2√2 ≈ 1.1314
- b₅ = 0.4 * (√2)^(5-1) = 0.4 * 4 = 1.6
Ответ:
- a) 6, 12, 24, 48, 96
- б) -24, 36, -54, 81, -121.5
- в) -16, -8, -4, -2, -1
- г) 0.4, 0.4√2, 0.8, 0.8√2, 1.6