Решим данное задание, используя правила нахождения производной функции.
197.1) $$y = 4x^3$$
$$y' = 4 \cdot 3x^{3-1} = 12x^2$$
Ответ: $$y' = 12x^2$$
2) $$y = 3x^4$$
$$y' = 3 \cdot 4x^{4-1} = 12x^3$$
Ответ: $$y' = 12x^3$$
3) $$y = 4x^{\frac{3}{4}}$$
$$y' = 4 \cdot \frac{3}{4}x^{\frac{3}{4}-1} = 3x^{-\frac{1}{4}} = \frac{3}{\sqrt[4]{x}}$$
Ответ: $$y' = \frac{3}{\sqrt[4]{x}}$$
4) $$y = \sqrt[3]{x^2} = x^{\frac{2}{3}}$$
$$y' = \frac{2}{3}x^{\frac{2}{3}-1} = \frac{2}{3}x^{-\frac{1}{3}} = \frac{2}{3\sqrt[3]{x}}$$
Ответ: $$y' = \frac{2}{3\sqrt[3]{x}}$$
5) $$y = \sqrt[3]{8x} = 2\sqrt[3]{x} = 2x^{\frac{1}{3}}$$
$$y' = 2 \cdot \frac{1}{3}x^{\frac{1}{3}-1} = \frac{2}{3}x^{-\frac{2}{3}} = \frac{2}{3\sqrt[3]{x^2}}$$
Ответ: $$y' = \frac{2}{3\sqrt[3]{x^2}}$$
6) $$y = \frac{1}{2}\sqrt[3]{x^2} = \frac{1}{2}x^{\frac{2}{3}}$$
$$y' = \frac{1}{2} \cdot \frac{2}{3}x^{\frac{2}{3}-1} = \frac{1}{3}x^{-\frac{1}{3}} = \frac{1}{3\sqrt[3]{x}}$$
Ответ: $$y' = \frac{1}{3\sqrt[3]{x}}$$
198.1) $$y = \frac{2}{x^3} = 2x^{-3}$$
$$y' = 2 \cdot (-3)x^{-3-1} = -6x^{-4} = -\frac{6}{x^4}$$
Ответ: $$y' = -\frac{6}{x^4}$$
2) $$y = \frac{2}{\sqrt{x}} = 2x^{-\frac{1}{2}}$$
$$y' = 2 \cdot (-\frac{1}{2})x^{-\frac{1}{2}-1} = -x^{-\frac{3}{2}} = -\frac{1}{\sqrt{x^3}} = -\frac{1}{x\sqrt{x}}$$
Ответ: $$y' = -\frac{1}{x\sqrt{x}}$$
3) $$y = \frac{1}{\sqrt[3]{x}} = x^{-\frac{1}{3}}$$
$$y' = -\frac{1}{3}x^{-\frac{1}{3}-1} = -\frac{1}{3}x^{-\frac{4}{3}} = -\frac{1}{3\sqrt[3]{x^4}} = -\frac{1}{3x\sqrt[3]{x}}$$
Ответ: $$y' = -\frac{1}{3x\sqrt[3]{x}}$$
4) $$y = \frac{6}{\sqrt[3]{x^2}} = 6x^{-\frac{2}{3}}$$
$$y' = 6 \cdot (-\frac{2}{3})x^{-\frac{2}{3}-1} = -4x^{-\frac{5}{3}} = -\frac{4}{\sqrt[3]{x^5}} = -\frac{4}{x\sqrt[3]{x^2}}$$
Ответ: $$y' = -\frac{4}{x\sqrt[3]{x^2}}$$
5) $$y = \frac{1}{\sqrt{4x^3}} = \frac{1}{2\sqrt{x^3}} = \frac{1}{2}x^{-\frac{3}{2}}$$
$$y' = \frac{1}{2} \cdot (-\frac{3}{2})x^{-\frac{3}{2}-1} = -\frac{3}{4}x^{-\frac{5}{2}} = -\frac{3}{4\sqrt{x^5}} = -\frac{3}{4x^2\sqrt{x}}$$
Ответ: $$y' = -\frac{3}{4x^2\sqrt{x}}$$
6) $$y = \frac{1}{\sqrt{x^{\frac{2}{3}}}} = \frac{1}{x^{\frac{1}{3}}} = x^{-\frac{1}{3}}$$
$$y' = -\frac{1}{3}x^{-\frac{1}{3}-1} = -\frac{1}{3}x^{-\frac{4}{3}} = -\frac{1}{3\sqrt[3]{x^4}} = -\frac{1}{3x\sqrt[3]{x}}$$
Ответ: $$y' = -\frac{1}{3x\sqrt[3]{x}}$$