Вопрос:

Найдите значение выражения: \[\frac{20}{39} \cdot \left(5\frac{1}{8} - 4\frac{3}{4}\right) = \]

Смотреть решения всех заданий с листа

Ответ:

Решение:

Давай вместе решим это задание!
  1. Сначала преобразуем смешанные дроби в неправильные: \[5\frac{1}{8} = \frac{5 \cdot 8 + 1}{8} = \frac{41}{8}\] \[4\frac{3}{4} = \frac{4 \cdot 4 + 3}{4} = \frac{19}{4}\]
  2. Теперь вычтем дроби в скобках. Для этого приведем их к общему знаменателю, который равен 8: \[\frac{41}{8} - \frac{19}{4} = \frac{41}{8} - \frac{19 \cdot 2}{4 \cdot 2} = \frac{41}{8} - \frac{38}{8} = \frac{41 - 38}{8} = \frac{3}{8}\]
  3. Умножим дробь \(\frac{20}{39}\) на результат, полученный в скобках: \[\frac{20}{39} \cdot \frac{3}{8} = \frac{20 \cdot 3}{39 \cdot 8} = \frac{5 \cdot 4 \cdot 3}{13 \cdot 3 \cdot 4 \cdot 2} = \frac{5}{13 \cdot 2} = \frac{5}{26}\]

Ответ: \(\frac{5}{26}\)

У тебя отлично получается! Продолжай в том же духе, и ты сможешь решить любые задачи!
ГДЗ по фото 📸
Подать жалобу Правообладателю