Необходимо найти значение выражения при заданных значениях переменных:
$$ \frac{xy+y^2}{8x} - \frac{4x}{x+y} $$ при $$ x = \sqrt{3}, y = -5.2 $$.
Подставим значения переменных в выражение:
$$ \frac{\sqrt{3} \cdot (-5.2) + (-5.2)^2}{8\sqrt{3}} - \frac{4\sqrt{3}}{\sqrt{3} + (-5.2)} = \frac{-5.2\sqrt{3} + 27.04}{8\sqrt{3}} - \frac{4\sqrt{3}}{\sqrt{3} - 5.2} $$
$$ \frac{-5.2\sqrt{3} + 27.04}{8\sqrt{3}} - \frac{4\sqrt{3}}{\sqrt{3} - 5.2} = \frac{-5.2\sqrt{3} + 27.04}{8\sqrt{3}} - \frac{4\sqrt{3}(\sqrt{3} + 5.2)}{(\sqrt{3} - 5.2)(\sqrt{3} + 5.2)} = \frac{-5.2\sqrt{3} + 27.04}{8\sqrt{3}} - \frac{4\sqrt{3}(\sqrt{3} + 5.2)}{3 - 5.2^2} = $$
$$ \frac{-5.2\sqrt{3} + 27.04}{8\sqrt{3}} - \frac{4\sqrt{3}(\sqrt{3} + 5.2)}{3 - 27.04} = \frac{-5.2\sqrt{3} + 27.04}{8\sqrt{3}} - \frac{4\sqrt{3}(\sqrt{3} + 5.2)}{-24.04} = \frac{-5.2\sqrt{3} + 27.04}{8\sqrt{3}} + \frac{4\sqrt{3}(\sqrt{3} + 5.2)}{24.04} $$
$$ \frac{-5.2\sqrt{3} + 27.04}{8\sqrt{3}} + \frac{4\sqrt{3}(\sqrt{3} + 5.2)}{24.04} = \frac{-5.2\sqrt{3} + 27.04}{8\sqrt{3}} + \frac{4(3 + 5.2\sqrt{3})}{24.04} = \frac{-5.2\sqrt{3} + 27.04}{8\sqrt{3}} + \frac{12 + 20.8\sqrt{3}}{24.04} $$
$$ = \frac{(-5.2\sqrt{3} + 27.04) \cdot 24.04 + (12 + 20.8\sqrt{3}) \cdot 8\sqrt{3}}{8\sqrt{3} \cdot 24.04} = \frac{-125.00 \cdot \sqrt{3} + 650.00 + 96\sqrt{3} + 499.2}{192.32 \cdot \sqrt{3}} = \frac{-29\sqrt{3}+1149.2}{192.32\sqrt{3}} \approx 3.18$$
Ответ: ≈ 3.18