\[(\sqrt{5} - \sqrt{2})(\sqrt{5} + \sqrt{2}) = (\sqrt{5})^2 - (\sqrt{2})^2 = 5 - 2 = 3\]
\[(\sqrt{7} - \sqrt{3})(\sqrt{7} + \sqrt{3}) = (\sqrt{7})^2 - (\sqrt{3})^2 = 7 - 3 = 4\]
\[(\sqrt{7} - \sqrt{2})(\sqrt{7} + \sqrt{2}) = (\sqrt{7})^2 - (\sqrt{2})^2 = 7 - 2 = 5\]
\[(\sqrt{17} - \sqrt{3})(\sqrt{17} + \sqrt{3}) = (\sqrt{17})^2 - (\sqrt{3})^2 = 17 - 3 = 14\]
\[(\sqrt{19} - \sqrt{5})(\sqrt{19} + \sqrt{5}) = (\sqrt{19})^2 - (\sqrt{5})^2 = 19 - 5 = 14\]
\[(\sqrt{8} + \sqrt{2}) \cdot \sqrt{2} = \sqrt{8} \cdot \sqrt{2} + \sqrt{2} \cdot \sqrt{2} = \sqrt{16} + 2 = 4 + 2 = 6\]
\[(\sqrt{12} + \sqrt{3}) \cdot \sqrt{3} = \sqrt{12} \cdot \sqrt{3} + \sqrt{3} \cdot \sqrt{3} = \sqrt{36} + 3 = 6 + 3 = 9\]
\[(\sqrt{32} + \sqrt{2}) \cdot \sqrt{2} = \sqrt{32} \cdot \sqrt{2} + \sqrt{2} \cdot \sqrt{2} = \sqrt{64} + 2 = 8 + 2 = 10\]
\[(\sqrt{27} + \sqrt{3}) \cdot \sqrt{3} = \sqrt{27} \cdot \sqrt{3} + \sqrt{3} \cdot \sqrt{3} = \sqrt{81} + 3 = 9 + 3 = 12\]
\[(\sqrt{48} + \sqrt{3}) \cdot \sqrt{3} = \sqrt{48} \cdot \sqrt{3} + \sqrt{3} \cdot \sqrt{3} = \sqrt{144} + 3 = 12 + 3 = 15\]
Ответ: Задание 12: 3, 4, 5, 14, 14; Задание 14: 6, 9, 10, 12, 15