Вопрос:

Найдите значение выражения $$33a-23b+71$$, если $$\frac{3a-4b+8}{4a-3b+8}=9$$.

Смотреть решения всех заданий с листа

Ответ:

Выразим $$3a-4b+8$$ через $$4a-3b+8$$:

$$3a-4b+8 = 9(4a-3b+8)$$ $$3a-4b+8 = 36a - 27b + 72$$

Перенесем все в левую часть:

$$36a-3a-27b+4b+72-8 = 0$$ $$33a - 23b + 64 = 0$$

Выразим $$33a-23b$$:

$$33a - 23b = -64$$

Найдем значение выражения $$33a-23b+71$$:

$$33a - 23b + 71 = -64 + 71 = 7$$

Ответ: 7

ГДЗ по фото 📸
Подать жалобу Правообладателю