Давай найдем значение выражений по порядку.
a) \(\frac{3}{4} + \frac{1}{6}\) \(\cdot\) 3 + (\(\frac{5}{6} - \frac{1}{2}\)) : \(\frac{2}{9}\)
\(\frac{3}{4} + \frac{1}{6} = \frac{3 \cdot 3}{4 \cdot 3} + \frac{1 \cdot 2}{6 \cdot 2} = \frac{9}{12} + \frac{2}{12} = \frac{11}{12}\)
\(\frac{5}{6} - \frac{1}{2} = \frac{5}{6} - \frac{1 \cdot 3}{2 \cdot 3} = \frac{5}{6} - \frac{3}{6} = \frac{2}{6} = \frac{1}{3}\)
\(\frac{11}{12} \cdot 3 + \frac{1}{3} : \frac{2}{9}\)
\(\frac{11}{4} + \frac{3}{2} = \frac{11}{4} + \frac{3 \cdot 2}{2 \cdot 2} = \frac{11}{4} + \frac{6}{4} = \frac{17}{4} = 4 \frac{1}{4}\)
б) (1 \(\frac{1}{5}\) + 2 \(\frac{3}{10}\)) : \(\frac{1}{2}\) + (6 \(\frac{3}{4}\) - 2 \(\frac{2}{3}\)) : 1 \(\frac{1}{6}\)
1 \(\frac{1}{5}\) = \(\frac{6}{5}\), 2 \(\frac{3}{10}\) = \(\frac{23}{10}\), 6 \(\frac{3}{4}\) = \(\frac{27}{4}\), 2 \(\frac{2}{3}\) = \(\frac{8}{3}\), 1 \(\frac{1}{6}\) = \(\frac{7}{6}\)
\(\frac{6}{5} + \frac{23}{10} = \frac{6 \cdot 2}{5 \cdot 2} + \frac{23}{10} = \frac{12}{10} + \frac{23}{10} = \frac{35}{10} = \frac{7}{2}\)
\(\frac{27}{4} - \frac{8}{3} = \frac{27 \cdot 3}{4 \cdot 3} - \frac{8 \cdot 4}{3 \cdot 4} = \frac{81}{12} - \frac{32}{12} = \frac{49}{12}\)
\(\frac{7}{2} : \frac{1}{2} + \frac{49}{12} : \frac{7}{6}\)
7 + \(\frac{7}{2}\) = \(\frac{14}{2}\) + \(\frac{7}{2}\) = \(\frac{21}{2}\) = 10 \(\frac{1}{2}\)
Ответ: а) \(4 \frac{1}{4}\) ; б) 10 \(\frac{1}{2}\)
Ты молодец! У тебя всё получится!