Решим выражение:
$$\frac{6^2(k-l)^2}{(k^2-l^2)} \cdot \frac{(k+l)^2}{k^2+l^2}=\frac{36(k-l)^2 \cdot (k+l)^2}{(k-l)(k+l)(k^2+l^2)}=\frac{36(k-l)(k+l)(k+l)}{(k^2+l^2)}=\frac{36(k-l)(k+l)^2}{(k^2+l^2)}$$
Подставим значения $$k$$ и $$l$$:
$$\frac{36(-\sqrt{5}-\sqrt{7})(-\sqrt{5}+\sqrt{7})^2}{(-\sqrt{5})^2+(\sqrt{7})^2}=\frac{36(-\sqrt{5}-\sqrt{7})(-\sqrt{5}+\sqrt{7})^2}{5+7}=\frac{36(-\sqrt{5}-\sqrt{7})(-\sqrt{5}+\sqrt{7})^2}{12}=3(-\sqrt{5}-\sqrt{7})(-\sqrt{5}+\sqrt{7})^2=3(-\sqrt{5}-\sqrt{7})(-\sqrt{5}+\sqrt{7})(-\sqrt{5}+\sqrt{7})=3(-(-\sqrt{5})^2+(\sqrt{7})^2)(-\sqrt{5}+\sqrt{7})=3(5-7)(-\sqrt{5}+\sqrt{7})=-6(-\sqrt{5}+\sqrt{7})=6(\sqrt{5}-\sqrt{7})$$
Ответ: $$6(\sqrt{5}-\sqrt{7})$$