Решение:
Найдем координаты векторов $$ \overrightarrow{AB} $$ и $$ \overrightarrow{BC} $$.
$$ A = (6, 10), B = (8, -6), C = (-10, 3) $$
$$ \overrightarrow{AB} = (8 - 6, -6 - 10) = (2, -16) $$
$$ \overrightarrow{BC} = (-10 - 8, 3 - (-6)) = (-18, 9) $$
Найдем косинус угла между векторами $$ \overrightarrow{AB} $$ и $$ \overrightarrow{BC} $$ по формуле:
$$ cos(\angle(\overrightarrow{AB}, \overrightarrow{BC})) = \frac{\overrightarrow{AB} \cdot \overrightarrow{BC}}{|\overrightarrow{AB}| \cdot |\overrightarrow{BC}|} $$
Скалярное произведение векторов $$ \overrightarrow{AB} $$ и $$ \overrightarrow{BC} $$:
$$ \overrightarrow{AB} \cdot \overrightarrow{BC} = (2 \cdot (-18)) + ((-16) \cdot 9) = -36 - 144 = -180 $$
Длины векторов $$ \overrightarrow{AB} $$ и $$ \overrightarrow{BC} $$:
$$ |\overrightarrow{AB}| = \sqrt{2^2 + (-16)^2} = \sqrt{4 + 256} = \sqrt{260} $$
$$ |\overrightarrow{BC}| = \sqrt{(-18)^2 + 9^2} = \sqrt{324 + 81} = \sqrt{405} $$
Тогда:
$$ cos(\angle(\overrightarrow{AB}, \overrightarrow{BC})) = \frac{-180}{\sqrt{260} \cdot \sqrt{405}} = \frac{-180}{\sqrt{260 \cdot 405}} = \frac{-180}{\sqrt{105300}} = \frac{-180}{\sqrt{900 \cdot 117}} = \frac{-180}{30 \sqrt{117}} = \frac{-6}{\sqrt{117}} = \frac{-6}{\sqrt{9 \cdot 13}} = \frac{-6}{3\sqrt{13}} = \frac{-2}{\sqrt{13}} = \frac{-2\sqrt{13}}{13} $$
Ответ: $$ \frac{-2\sqrt{13}}{13} $$