1. Найдем значения выражений:
1) $$2\cdot arcsin\frac{\sqrt{3}}{2}+3\cdot arcsin(-\frac{1}{2})=2\cdot \frac{\pi}{3}+3\cdot(-\frac{\pi}{6})=\frac{2\pi}{3}-\frac{\pi}{2}=\frac{4\pi-3\pi}{6}=\frac{\pi}{6}$$
2) $$arcsin\frac{\sqrt{2}}{2}-4arcsin1=\frac{\pi}{4}-4\cdot\frac{\pi}{2}=\frac{\pi}{4}-2\pi=\frac{\pi-8\pi}{4}=-\frac{7\pi}{4}$$
3) $$arccos(-\frac{1}{2})-arcsin\frac{\sqrt{3}}{2}=\frac{2\pi}{3}-\frac{\pi}{3}=\frac{\pi}{3}$$
4) $$arccos(-1)-arcsin(-1)=\pi-(-\frac{\pi}{2})=\pi+\frac{\pi}{2}=\frac{3\pi}{2}$$
5) $$2arctg1+3arctg(-\frac{1}{\sqrt{3}})=2\cdot\frac{\pi}{4}+3\cdot(-\frac{\pi}{6})=\frac{\pi}{2}-\frac{\pi}{2}=0$$
6) $$4arctg(-1)+3arctg\sqrt{3}=4\cdot(-\frac{\pi}{4})+3\cdot\frac{\pi}{3}=-\pi+\pi=0$$
Ответ: 1) $$\frac{\pi}{6}$$; 2) $$-\frac{7\pi}{4}$$; 3) $$\frac{\pi}{3}$$; 4) $$\frac{3\pi}{2}$$; 5) $$0$$; 6) $$0$$.