Решение задачи:
- Определим размер изображения в пикселях:
$$256 \times 128 = 32768 \text{ пикселей}$$
- Переведем размер файла из килобайт в байты:
$$16 \text{ Кбайт} = 16 \times 1024 \text{ байт} = 16384 \text{ байт}$$
- Определим, сколько байт приходится на один пиксель:
$$\frac{16384 \text{ байт}}{32768 \text{ пикселей}} = 0.5 \text{ байта}$$
- Переведем байты в биты, чтобы узнать глубину цвета в битах:
$$0.5 \text{ байта} = 0.5 \times 8 \text{ бит} = 4 \text{ бита}$$
- Определим максимальное количество цветов в палитре:
$$2^{4} = 16$$
Ответ: Максимально возможное количество цветов в палитре изображения - 16.