Вопрос:

ол МПК равен 42°, МК = KN. Найди внешний угол пр аправлении деревни Старки, расстояние между которы 3 кениях -x (x + 11) + (x + 5) (x - 5) при x = 11 на деталь, которую Иван Сергеевич решил сделать...

Смотреть решения всех заданий с листа

Ответ:

Решение математических задач

Задание 1

В треугольнике MNK угол MNK равен 42°, MK = KN. Найдите внешний угол при вершине K.

Решение:

Поскольку MK = KN, треугольник MNK является равнобедренным с основанием MN. В равнобедренном треугольнике углы при основании равны, поэтому угол KMN равен углу KNM.

Сумма углов в треугольнике равна 180°, поэтому:

∠MNK + ∠KMN + ∠KNM = 180°

42° + ∠KMN + ∠KMN = 180°

2 * ∠KMN = 180° - 42°

2 * ∠KMN = 138°

∠KMN = 69°

Таким образом, угол KMN (и угол KNM) равен 69°.

Внешний угол при вершине K является смежным с углом MKN. Сумма смежных углов равна 180°.

Внешний угол при вершине K = 180° - ∠MKN = 180° - 42° = 138°

Ответ: 138°

Задание 2

Упростите выражение -x(x + 11) + (x + 5)(x - 5) при x = 3/11

Решение:

Сначала упростим выражение:

-x(x + 11) + (x + 5)(x - 5) = -x² - 11x + (x² - 25) = -x² - 11x + x² - 25 = -11x - 25

Теперь подставим x = 3/11 в упрощенное выражение:

-11 * (3/11) - 25 = -3 - 25 = -28

Ответ: -28

ГДЗ по фото 📸
Подать жалобу Правообладателю