Вопрос:

Опираясь на теорию графов, решите задачу. Из стальной проволоки нужно изготовить абажур заданных размеров (см. рисунок), затратив наименьшее возможное количество проволоки. Проволоку можно гнуть под любым углом и сваривать в точках соединения. Какое наименьшее количество кусков проволоки потребуется?

Ответ:

Для решения этой задачи, нам нужно посчитать количество ребер графа, изображенного на рисунке. Абажур состоит из двух окружностей и вертикальных ребер, соединяющих эти окружности. Посчитаем количество ребер: 1. **Окружности:** Каждая окружность имеет 8 ребер. 2. **Вертикальные ребра:** Есть 8 вертикальных ребер, соединяющих две окружности. Общее количество ребер: 8 (верхняя окружность) + 8 (нижняя окружность) + 8 (вертикальные ребра) = 24 ребра. Так как каждое ребро может быть изготовлено из одного куска проволоки, то для изготовления абажура потребуется 24 куска проволоки. Поэтому минимальное количество кусков проволоки равно количеству ребер. Ответ: 24
Смотреть решения всех заданий с листа
Подать жалобу Правообладателю