Вопрос:

Определи коэффициент подобия треугольников PLM и QWR со сходными сторонами PL и QW, LM и WR. В ответ запиши отношение сторон первого треугольника к сторонам второго.

Смотреть решения всех заданий с листа

Ответ:

Чтобы определить коэффициент подобия треугольников PLM и QWR, нужно найти отношение сходственных сторон этих треугольников. По условию, сходственными сторонами являются PL и QW, LM и WR.

На чертеже даны длины сторон:

  • PL = 14
  • LM = 15
  • QW = 7
  • WR = 5

Коэффициент подобия k можно найти как отношение PL к QW или LM к WR. Проверим оба варианта:

1) $$k = \frac{PL}{QW} = \frac{14}{7} = 2$$

2) $$k = \frac{LM}{WR} = \frac{15}{5} = 3$$

Так как треугольники подобные, коэффициент подобия должен быть одинаковым для всех пар сходственных сторон. В данном случае, предложенные треугольники не подобны, поскольку отношения сторон не равны. Примем, что на рисунке допущена неточность, и стороны LM и WR соответствуют сторонам PL и QW соответственно. Тогда нужно найти коэффициент подобия треугольников PLM и QWR со сходственными сторонами PL и QW, LM и WR.

$$k = \frac{PL}{QW} = \frac{14}{7} = 2$$

$$k = \frac{LM}{WR} = \frac{15}{5} = 3$$

Пусть, к примеру, PL и WR, LM и QW. Тогда

$$k = \frac{PL}{WR} = \frac{14}{5} = 2.8$$

$$k = \frac{LM}{QW} = \frac{15}{7} \approx 2.14$$

Таким образом, коэффициент подобия (отношение сторон первого треугольника к сторонам второго) $$k = 2$$ или $$k = 3$$ в зависимости от того, какие стороны считать соответствующими. Предположим, что $$k= \frac{14}{7}=2$$ является верным.

В поле ответа нужно записать верное число.

Ответ: 2

ГДЗ по фото 📸
Подать жалобу Правообладателю