Решение:
Пусть V - объем бассейна.
Производительность первой трубы: $$P_1 = \frac{V}{45}$$ (бассейна/мин)
Производительность второй трубы: $$P_2 = \frac{V}{30}$$ (бассейна/мин)
Совместная производительность: $$P = P_1 + P_2 = \frac{V}{45} + \frac{V}{30} = V(\frac{1}{45} + \frac{1}{30})$$
Найдем общее время t, за которое две трубы вместе наполнят бассейн:
$$t = \frac{V}{P} = \frac{V}{V(\frac{1}{45} + \frac{1}{30})} = \frac{1}{\frac{1}{45} + \frac{1}{30}} = \frac{1}{\frac{2}{90} + \frac{3}{90}} = \frac{1}{\frac{5}{90}} = \frac{90}{5} = 18$$ мин.
Ответ: 18 минут