Обозначим скорость первого автомобиля через \( v_1 \), а второго через \( v_2 \). Путь первого автомобиля за 3 часа равен \( 3v_1 \), а путь второго автомобиля за 1 час равен \( v_2 \). Условие задачи: \( 3v_1 = 2v_2 \). Разделим обе части уравнения на \( 3v_1 \): \( \frac{3v_1}{3v_1} = \frac{2v_2}{3v_1} \). Получаем \( 1 = \frac{2}{3} \cdot \frac{v_2}{v_1} \). Тогда \( \frac{v_2}{v_1} = \frac{3}{2} \). Отношение скорости второго автомобиля к скорости первого равно \( 3:2 \).