Для решения задачи используем формулу линейного расширения:
$$ΔL = αLΔT,$$
где:
- $$ΔL$$ - изменение длины проволоки;
- $$α$$ - коэффициент линейного расширения;
- $$L$$ - начальная длина проволоки;
- $$ΔT$$ - изменение температуры.
Выразим изменение температуры $$ΔT$$:
$$ΔT = \frac{ΔL}{αL}$$
- Переведем все величины в систему СИ:
- Длина проволоки: $$L = 1,5 \text{ м}$$
- Удлинение проволоки: $$ΔL = 15 \text{ мм} = 15 \times 10^{-3} \text{ м} = 0,015 \text{ м}$$
- Коэффициент линейного расширения: $$α = 9 \cdot 10^{-6} \text{ К}^{-1}$$
- Подставим значения в формулу:
$$ΔT = \frac{0,015 \text{ м}}{9 \cdot 10^{-6} \text{ К}^{-1} \cdot 1,5 \text{ м}} = \frac{0,015}{9 \cdot 10^{-6} \cdot 1,5} \text{ К} = \frac{0,015}{0,0000135} \text{ К} = 1111,11 \text{ К}$$
Округлим результат до целых градусов.
Ответ: 1111 К