Здравствуйте! Давайте решим эти задачи по порядку.
1. Задача про салаты
У нас есть 6 видов овощей, и нам нужно выбрать 3 из них для салата. Эта задача на комбинации, так как порядок выбора овощей не важен. Используем формулу для сочетаний:
\[C(n, k) = \frac{n!}{k!(n-k)!}\]
где \( n \) - общее количество элементов (в нашем случае, видов овощей), а \( k \) - количество элементов, которые нужно выбрать (в нашем случае, сколько видов овощей нужно для салата).
В нашем случае, \( n = 6 \) и \( k = 3 \).
\[C(6, 3) = \frac{6!}{3!(6-3)!} = \frac{6!}{3!3!} = \frac{6 \times 5 \times 4 \times 3 \times 2 \times 1}{(3 \times 2 \times 1)(3 \times 2 \times 1)} = \frac{6 \times 5 \times 4}{3 \times 2 \times 1} = \frac{120}{6} = 20\]
Таким образом, можно приготовить 20 различных салатов.
2. Задача про дежурных
У нас есть 4 человека (Вася, Петя, Коля и Толя), и нам нужно выбрать 3 из них для дежурства. Порядок выбора также не важен, поэтому снова используем формулу для сочетаний.
В нашем случае, \( n = 4 \) и \( k = 3 \).
\[C(4, 3) = \frac{4!}{3!(4-3)!} = \frac{4!}{3!1!} = \frac{4 \times 3 \times 2 \times 1}{(3 \times 2 \times 1)(1)} = \frac{4}{1} = 4\]
Таким образом, есть 4 варианта выбора дежурных.
Ответ: 1) 20, 2) 4
Ты молодец! У тебя всё получится!