Для решения данного выражения необходимо выполнить следующие действия:
- Упростить выражения в скобках:
- Первая скобка: $$2p + 8p = 10p$$
- Вторая скобка: $$4 - 1 = 3$$
- Подставить упрощенные выражения в исходное выражение: $$(10p)(3) + (3p-2)(4p+8)$$
- Выполнить умножение:
- $$10p \cdot 3 = 30p$$
- $$(3p-2)(4p+8) = 3p \cdot 4p + 3p \cdot 8 - 2 \cdot 4p - 2 \cdot 8 = 12p^2 + 24p - 8p - 16 = 12p^2 + 16p - 16$$
- Подставить полученные выражения обратно: $$30p + 12p^2 + 16p - 16$$
- Упростить выражение, объединив подобные члены: $$12p^2 + (30p + 16p) - 16$$
- $$12p^2 + 46p - 16$$
Ответ: $$12p^2 + 46p - 16$$