Решим данное задание по математике.
Для того чтобы представить смешанное число в виде неправильной дроби, нужно целую часть умножить на знаменатель и прибавить числитель, полученное число записать в числитель, а знаменатель оставить прежним.
А
- $$2\frac{1}{3}=\frac{2 \cdot 3 + 1}{3} = \frac{6+1}{3} = \frac{7}{3}$$
- $$3\frac{3}{11}=\frac{3 \cdot 11 + 3}{11} = \frac{33+3}{11} = \frac{36}{11}$$
- $$10\frac{8}{9}=\frac{10 \cdot 9 + 8}{9} = \frac{90+8}{9} = \frac{98}{9}$$
- $$5\frac{4}{5}=\frac{5 \cdot 5 + 4}{5} = \frac{25+4}{5} = \frac{29}{5}$$
- $$5\frac{5}{6}=\frac{5 \cdot 6 + 5}{6} = \frac{30+5}{6} = \frac{35}{6}$$
- $$6\frac{7}{8}=\frac{6 \cdot 8 + 7}{8} = \frac{48+7}{8} = \frac{55}{8}$$
- $$11\frac{12}{13}=\frac{11 \cdot 13 + 12}{13} = \frac{143+12}{13} = \frac{155}{13}$$
- $$4\frac{7}{32}=\frac{4 \cdot 32 + 7}{32} = \frac{128+7}{32} = \frac{135}{32}$$
Б
- $$1\frac{2}{99}=\frac{1 \cdot 99 + 2}{99} = \frac{99+2}{99} = \frac{101}{99}$$
- $$15\frac{1}{10}=\frac{15 \cdot 10 + 1}{10} = \frac{150+1}{10} = \frac{151}{10}$$
- $$3\frac{10}{19}=\frac{3 \cdot 19 + 10}{19} = \frac{57+10}{19} = \frac{67}{19}$$
- $$1\frac{2}{121}=\frac{1 \cdot 121 + 2}{121} = \frac{121+2}{121} = \frac{123}{121}$$
- $$5\frac{5}{6}=\frac{5 \cdot 6 + 5}{6} = \frac{30+5}{6} = \frac{35}{6}$$
- $$7\frac{15}{100}=\frac{7 \cdot 100 + 15}{100} = \frac{700+15}{100} = \frac{715}{100}$$
- $$16,2 = 16\frac{2}{10}=\frac{16 \cdot 10 + 2}{10} = \frac{160+2}{10} = \frac{162}{10}=\frac{81}{5}$$
- $$14 = \frac{14}{1}$$
B
- $$2\frac{6}{19}=\frac{2 \cdot 19 + 6}{19} = \frac{38+6}{19} = \frac{44}{19}$$
- $$1\frac{5}{17}=\frac{1 \cdot 17 + 5}{17} = \frac{17+5}{17} = \frac{22}{17}$$
- $$3=\frac{3}{1}$$
- $$1\frac{9}{32}=\frac{1 \cdot 32 + 9}{32} = \frac{32+9}{32} = \frac{41}{32}$$
- $$15\frac{7}{8}=\frac{15 \cdot 8 + 7}{8} = \frac{120+7}{8} = \frac{127}{8}$$
- $$1\frac{1}{1000}=\frac{1 \cdot 1000 + 1}{1000} = \frac{1000+1}{1000} = \frac{1001}{1000}$$
- $$15\frac{1}{3}=\frac{15 \cdot 3 + 1}{3} = \frac{45+1}{3} = \frac{46}{3}$$
- $$8\frac{3}{7}=\frac{8 \cdot 7 + 3}{7} = \frac{56+3}{7} = \frac{59}{7}$$
- $$9\frac{5}{8}=\frac{9 \cdot 8 + 5}{8} = \frac{72+5}{8} = \frac{77}{8}$$
- $$9=\frac{9}{1}$$
- $$1\frac{7}{18}=\frac{1 \cdot 18 + 7}{18} = \frac{18+7}{18} = \frac{25}{18}$$
- $$3\frac{9}{8}=\frac{3 \cdot 8 + 9}{8} = \frac{24+9}{8} = \frac{33}{8}$$
- $$3\frac{7}{22}=\frac{3 \cdot 22 + 7}{22} = \frac{66+7}{22} = \frac{73}{22}$$
- $$2=\frac{2}{1}$$
- $$2,5 = 2\frac{5}{10}=\frac{2 \cdot 10 + 5}{10} = \frac{20+5}{10} = \frac{25}{10}=\frac{5}{2}$$
8,7 = $$8\frac{7}{10}=\frac{8 \cdot 10 + 7}{10} = \frac{80+7}{10} = \frac{87}{10}$$
$$13\frac{5}{7}=\frac{13 \cdot 7 + 5}{7} = \frac{91+5}{7} = \frac{96}{7}$$
$$7\frac{2}{15}=\frac{7 \cdot 15 + 2}{15} = \frac{105+2}{15} = \frac{107}{15}$$
$$3\frac{3}{4}=\frac{3 \cdot 4 + 3}{4} = \frac{12+3}{4} = \frac{15}{4}$$
$$2\frac{12}{23}=\frac{2 \cdot 23 + 12}{23} = \frac{46+12}{23} = \frac{58}{23}$$
$$10,5 = 10\frac{5}{10}=\frac{10 \cdot 10 + 5}{10} = \frac{100+5}{10} = \frac{105}{10}=\frac{21}{2}$$
$$19\frac{1}{2}=\frac{19 \cdot 2 + 1}{2} = \frac{38+1}{2} = \frac{39}{2}$$
$$18\frac{1}{5}=\frac{18 \cdot 5 + 1}{5} = \frac{90+1}{5} = \frac{91}{5}$$
$$10=\frac{10}{1}$$
Ответ: Выше приведены решения.