Вопрос:

5. Представьте в виде многочлена выражение: a) (x-3)²; б) (4x + 5y)²; в) (4a+6b)(4a-6b); г) (5x²+3)(3-5x2);

Ответ:

**5. Представьте в виде многочлена выражение:** **a) (x - 3)²** Используем формулу квадрата разности: ((a - b)² = a² - 2ab + b²) (x² - 2 * x * 3 + 3² = x² - 6x + 9) Ответ: (x² - 6x + 9) **б) (4x + 5y)²** Используем формулу квадрата суммы: ((a + b)² = a² + 2ab + b²) ((4x)² + 2 * 4x * 5y + (5y)² = 16x² + 40xy + 25y²) Ответ: (16x² + 40xy + 25y²) **в) (4a + 6b)(4a - 6b)** Используем формулу разности квадратов: ((a + b)(a - b) = a² - b²) ((4a)² - (6b)² = 16a² - 36b²) Ответ: (16a² - 36b²) **г) (5x² + 3)(3 - 5x²)** Используем формулу разности квадратов: ((a + b)(a - b) = a² - b²). Заметим, что (5x² + 3)(3 - 5x²) = (3 + 5x²)(3 - 5x²) (3² - (5x²)² = 9 - 25x⁴) Ответ: (9 - 25x⁴)
Смотреть решения всех заданий с листа
Подать жалобу Правообладателю

Похожие