Решение задания 15:
Для представления смешанного числа в виде неправильной дроби, нужно умножить целую часть на знаменатель дробной части и прибавить к числителю дробной части. Полученное число будет числителем новой дроби, а знаменатель останется прежним.
- $$2 \frac{7}{12} = \frac{2 \cdot 12 + 7}{12} = \frac{24 + 7}{12} = \frac{31}{12}$$
- $$4 \frac{4}{11} = \frac{4 \cdot 11 + 4}{11} = \frac{44 + 4}{11} = \frac{48}{11}$$
- $$3 \frac{4}{10} = \frac{3 \cdot 10 + 4}{10} = \frac{30 + 4}{10} = \frac{34}{10} = \frac{17}{5}$$
- $$5 \frac{2}{9} = \frac{5 \cdot 9 + 2}{9} = \frac{45 + 2}{9} = \frac{47}{9}$$
- $$4 \frac{5}{8} = \frac{4 \cdot 8 + 5}{8} = \frac{32 + 5}{8} = \frac{37}{8}$$
- $$1 \frac{19}{25} = \frac{1 \cdot 25 + 19}{25} = \frac{25 + 19}{25} = \frac{44}{25}$$
- $$3 \frac{3}{9} = \frac{3 \cdot 9 + 3}{9} = \frac{27 + 3}{9} = \frac{30}{9} = \frac{10}{3}$$
- $$5 \frac{1}{3} = \frac{5 \cdot 3 + 1}{3} = \frac{15 + 1}{3} = \frac{16}{3}$$
- $$6 \frac{2}{5} = \frac{6 \cdot 5 + 2}{5} = \frac{30 + 2}{5} = \frac{32}{5}$$
- $$3 \frac{2}{5} = \frac{3 \cdot 5 + 2}{5} = \frac{15 + 2}{5} = \frac{17}{5}$$
- $$8 \frac{3}{11} = \frac{8 \cdot 11 + 3}{11} = \frac{88 + 3}{11} = \frac{91}{11}$$
- $$2 \frac{1}{13} = \frac{2 \cdot 13 + 1}{13} = \frac{26 + 1}{13} = \frac{27}{13}$$
- $$7 \frac{1}{5} = \frac{7 \cdot 5 + 1}{5} = \frac{35 + 1}{5} = \frac{36}{5}$$
- $$3 \frac{1}{5} = \frac{3 \cdot 5 + 1}{5} = \frac{15 + 1}{5} = \frac{16}{5}$$
- $$1 \frac{51}{53} = \frac{1 \cdot 53 + 51}{53} = \frac{53 + 51}{53} = \frac{104}{53}$$
- $$7 \frac{5}{8} = \frac{7 \cdot 8 + 5}{8} = \frac{56 + 5}{8} = \frac{61}{8}$$
- $$5 \frac{5}{11} = \frac{5 \cdot 11 + 5}{11} = \frac{55 + 5}{11} = \frac{60}{11}$$
- $$13 \frac{1}{2} = \frac{13 \cdot 2 + 1}{2} = \frac{26 + 1}{2} = \frac{27}{2}$$
- $$3 \frac{1}{2} = \frac{3 \cdot 2 + 1}{2} = \frac{6 + 1}{2} = \frac{7}{2}$$
- $$2 \frac{172}{3} = \frac{2 \cdot 3 + 172}{3} = \frac{6 + 172}{3} = \frac{178}{3}$$
- $$2 \frac{5}{12} = \frac{2 \cdot 12 + 5}{12} = \frac{24 + 5}{12} = \frac{29}{12}$$
- $$7 \frac{4}{5} = \frac{7 \cdot 5 + 4}{5} = \frac{35 + 4}{5} = \frac{39}{5}$$
- $$6 \frac{2}{7} = \frac{6 \cdot 7 + 2}{7} = \frac{42 + 2}{7} = \frac{44}{7}$$
- $$3 \frac{21}{4} = \frac{3 \cdot 4 + 21}{4} = \frac{12 + 21}{4} = \frac{33}{4}$$
- $$10 \frac{5}{9} = \frac{10 \cdot 9 + 5}{9} = \frac{90 + 5}{9} = \frac{95}{9}$$
- $$5 \frac{2}{5} = \frac{5 \cdot 5 + 2}{5} = \frac{25 + 2}{5} = \frac{27}{5}$$
- $$11 \frac{3}{4} = \frac{11 \cdot 4 + 3}{4} = \frac{44 + 3}{4} = \frac{47}{4}$$
- $$10 \frac{2}{3} = \frac{10 \cdot 3 + 2}{3} = \frac{30 + 2}{3} = \frac{32}{3}$$
- $$3 \frac{5}{6} = \frac{3 \cdot 6 + 5}{6} = \frac{18 + 5}{6} = \frac{23}{6}$$
- $$13 \frac{4}{9} = \frac{13 \cdot 9 + 4}{9} = \frac{117 + 4}{9} = \frac{121}{9}$$
- $$3 \frac{5}{7} = \frac{3 \cdot 7 + 5}{7} = \frac{21 + 5}{7} = \frac{26}{7}$$
- $$4 \frac{5}{7} = \frac{4 \cdot 7 + 5}{7} = \frac{28 + 5}{7} = \frac{33}{7}$$
Ответ: См. решение.