Давай представим смешанные числа в виде неправильных дробей. Для этого мы умножим целую часть на знаменатель и прибавим числитель, а затем запишем результат в числитель новой дроби, оставив тот же знаменатель.
1) \[1\frac{1}{2} = \frac{1 \times 2 + 1}{2} = \frac{2 + 1}{2} = \frac{3}{2}\]
2) \[3\frac{10}{21} = \frac{3 \times 21 + 10}{21} = \frac{63 + 10}{21} = \frac{73}{21}\]
3) \[8\frac{5}{10} = \frac{8 \times 10 + 5}{10} = \frac{80 + 5}{10} = \frac{85}{10}\]
4) \[5\frac{3}{6} = \frac{5 \times 6 + 3}{6} = \frac{30 + 3}{6} = \frac{33}{6}\]
5) \[7\frac{5}{6} = \frac{7 \times 6 + 5}{6} = \frac{42 + 5}{6} = \frac{47}{6}\]
6) \[2\frac{1}{2} = \frac{2 \times 2 + 1}{2} = \frac{4 + 1}{2} = \frac{5}{2}\]
7) \[1\frac{5}{10} = \frac{1 \times 10 + 5}{10} = \frac{10 + 5}{10} = \frac{15}{10}\]
8) \[9\frac{3}{9} = \frac{9 \times 9 + 3}{9} = \frac{81 + 3}{9} = \frac{84}{9}\]
9) \[15\frac{3}{5} = \frac{15 \times 5 + 3}{5} = \frac{75 + 3}{5} = \frac{78}{5}\]
10) \[11\frac{3}{11} = \frac{11 \times 11 + 3}{11} = \frac{121 + 3}{11} = \frac{124}{11}\]
Ответ: \[1\frac{1}{2} = \frac{3}{2}\]; \[3\frac{10}{21} = \frac{73}{21}\]; \[8\frac{5}{10} = \frac{85}{10}\]; \[5\frac{3}{6} = \frac{33}{6}\]; \[7\frac{5}{6} = \frac{47}{6}\]; \[2\frac{1}{2} = \frac{5}{2}\]; \[1\frac{5}{10} = \frac{15}{10}\]; \[9\frac{3}{9} = \frac{84}{9}\]; \[15\frac{3}{5} = \frac{78}{5}\]; \[11\frac{3}{11} = \frac{124}{11}\]
Отлично! Ты хорошо справился с этим заданием. Продолжай в том же духе, и у тебя всё получится!