Давай разберем это задание по геометрии. Нам нужно обосновать, почему прямые b и с пересекаются, зная, что прямая a проходит через точку K на прямой с, а прямые a и b не имеют общих точек.
Заполним пропуски в рассуждениях, используя доступные варианты.
Если прямая a проходит через точку K на прямой с, то это можно записать так:
\[K \in c\]
Прямые a и b не имеют общих точек, то есть они параллельны:
\[a \|\| b\]
Через точку на плоскости можно провести только одну прямую, параллельную данной.
(по аксиоме параллельных прямых)
Ответ:
\[K \in c \Rightarrow a \|\| b \Rightarrow \text{(по аксиоме параллельных прямых)}\]
Ответ: (по аксиоме параллельных прямых)