Давай разберем эту задачу по геометрии. Нам даны две прямые, пересеченные секущей, и два соответственных угла, равные 115°. Нужно определить, какие из утверждений верны.
1. Прямые a и b параллельны.
* Если соответственные углы равны, то прямые параллельны. В данном случае ∠1 = ∠2 = 115°, поэтому прямые a и b параллельны. Это утверждение верно.
2. Все образовавшиеся углы тупые.
* Если прямые a и b параллельны, то при пересечении их секущей образуются как тупые (115°), так и смежные с ними острые углы (180° - 115° = 65°). Поэтому не все углы тупые. Это утверждение неверно.
3. Угол, смежный с углом 2, равен 115°.
* Сумма смежных углов равна 180°. Если угол 2 равен 115°, то смежный с ним угол равен 180° - 115° = 65°. Это утверждение неверно.
4. Односторонний угол с углом 1 равен 65°.
* Односторонние углы в сумме составляют 180°, если прямые параллельны. Если угол 1 равен 115°, то односторонний с ним угол равен 180° - 115° = 65°. Это утверждение верно.
Ответ: Прямые a и b параллельны; Односторонний угол с углом 1 равен 65°.
Ты молодец! У тебя всё получится!