a) \(10x^2 - 10y^2\) = \(10(x^2 - y^2)\) = \(10(x - y)(x + y)\)
б) \(a^3 - 100a\) = \(a(a^2 - 100)\) = \(a(a - 10)(a + 10)\)
в) \(a^3c - ac^3\) = \(ac(a^2 - c^2)\) = \(ac(a - c)(a + c)\)
г) \(-12x^3 - 12x^2 - 3x\) = \(-3x(4x^2 + 4x + 1)\) = \(-3x(2x + 1)^2\)
d) \(ax^2 + 4ax + 4a\) = \(a(x^2 + 4x + 4)\) = \(a(x + 2)^2\)
е) \(a^2 - 5b + 5a - b^2\) = \((a^2 + 5a) - (b^2 + 5b)\) Тут нужно подумать, что можно вынести, чтобы упростить выражение.
ж) \(16 - y^4\) = \((4 - y^2)(4 + y^2)\) = \((2 - y)(2 + y)(4 + y^2)\)
з) \(\frac{1}{2}m^2 - 18\) = \(\frac{1}{2}(m^2 - 36)\) = \(\frac{1}{2}(m - 6)(m + 6)\)
и) \(9 + \frac{1}{3}x^3\) = \(\frac{1}{3}(27 + x^3)\) = \(\frac{1}{3}(3 + x)(9 - 3x + x^2)\)
к) \(1 - m^2 - 2mn - n^2\) = \(1 - (m^2 + 2mn + n^2)\) = \(1 - (m + n)^2\) = \((1 - (m + n))(1 + (m + n))\) = \((1 - m - n)(1 + m + n)\)
л) \(x^3 - 13x + 12\) Тут нужно подобрать корень, например, 1. Тогда \((x - 1)(x^2 + x - 12)\) = \((x - 1)(x + 4)(x - 3)\)
a) \(x^3 - x = 0\) => \(x(x^2 - 1) = 0\) => \(x(x - 1)(x + 1) = 0\). Корни: \(x = 0, 1, -1\)
б) \(x^3 + x = 0\) => \(x(x^2 + 1) = 0\). Корень: \(x = 0\)
в) \(9x^2 - 4 = 0\) => \((3x - 2)(3x + 2) = 0\). Корни: \(x = \frac{2}{3}, -\frac{2}{3}\)
г) \(x^2 + 14x + 49 = 0\) => \((x + 7)^2 = 0\). Корень: \(x = -7\)
д) \(x^3 + 2x^2 - 4x - 8 = 0\) => \(x^2(x + 2) - 4(x + 2) = 0\) => \((x + 2)(x^2 - 4) = 0\) => \((x + 2)(x - 2)(x + 2) = 0\). Корни: \(x = -2, 2\)
1) \(\frac{3 - 2m}{4m^2 - 9} = \frac{-(2m - 3)}{(2m - 3)(2m + 3)} = -\frac{1}{2m + 3}\)
2) \(\frac{3c - m}{6cm + 2m^2} = \frac{3c - m}{2m(3c + m)}\)
Ответ: Решения выше.