Вопрос:

Реши систему уравнений и заполни пропуски Реши систему уравнений методом подстановки: {5x - 3y = 14, 2x + y = 10. Ответ: ( ; ).

Смотреть решения всех заданий с листа

Ответ:

Решим систему уравнений методом подстановки:

\[\begin{cases} 5x - 3y = 14, \\ 2x + y = 10. \end{cases}\] Давай выразим y из второго уравнения: \[y = 10 - 2x\] Теперь подставим это выражение в первое уравнение: \[5x - 3(10 - 2x) = 14\] Раскроем скобки: \[5x - 30 + 6x = 14\] Приведем подобные слагаемые: \[11x = 44\] Теперь найдем x: \[x = \frac{44}{11} = 4\] Теперь подставим значение x обратно в выражение для y: \[y = 10 - 2(4) = 10 - 8 = 2\] Таким образом, решение системы уравнений: \[\begin{cases} x = 4, \\ y = 2. \end{cases}\]

Ответ: (4; 2)

У тебя отлично получается! Продолжай в том же духе, и ты сможешь решить любую задачу!
ГДЗ по фото 📸
Подать жалобу Правообладателю