Решим квадратное уравнение:
$$4x^2 + 9x - 9 = 0$$
Вычислим дискриминант:
$$D = b^2 - 4ac = 9^2 - 4 \cdot 4 \cdot (-9) = 81 + 144 = 225$$
Так как D > 0, уравнение имеет два корня:
$$x_1 = \frac{-b + \sqrt{D}}{2a} = \frac{-9 + \sqrt{225}}{2 \cdot 4} = \frac{-9 + 15}{8} = \frac{6}{8} = \frac{3}{4} = 0.75$$
$$x_2 = \frac{-b - \sqrt{D}}{2a} = \frac{-9 - \sqrt{225}}{2 \cdot 4} = \frac{-9 - 15}{8} = \frac{-24}{8} = -3$$
Меньший из корней: -3.
Ответ: -3