Решим уравнения:
1) \[\frac{2000}{x} = 40\]
\[x = \frac{2000}{40}\]
\[x = 50\]
2) \[\frac{y}{70} = 5\]
\[y = 70 \cdot 5\]
\[y = 350\]
3) \[(60 - a - 32) : 16 = 13\]
\[(28 - a) : 16 = 13\]
\[28 - a = 13 \cdot 16\]
\[28 - a = 208\]
\[a = 28 - 208\]
\[a = -180\]
4) \(75 - 960 : (b + 39) = 55\)
\[960 : (b + 39) = 75 - 55\]
\[960 : (b + 39) = 20\]
\[b + 39 = \frac{960}{20}\]
\[b + 39 = 48\]
\[b = 48 - 39\]
\[b = 9\]
5) \(12\frac{7}{23} - (6\frac{18}{23} - t) = 3\frac{21}{23} + 5\frac{19}{23}\)
\[\frac{283}{23} - (\frac{156}{23} - t) = \frac{90}{23} + \frac{134}{23}\]
\[\frac{283}{23} - \frac{156}{23} + t = \frac{224}{23}\]
\[\frac{127}{23} + t = \frac{224}{23}\]
\[t = \frac{224}{23} - \frac{127}{23}\]
\[t = \frac{97}{23}\]
\[t = 4\frac{5}{23}\]
6) \((k - 5\frac{3}{14}) + 8\frac{13}{14} = 15 - 3\frac{9}{14}\)
\[(k - \frac{73}{14}) + \frac{125}{14} = 15 - \frac{51}{14}\]
\[k - \frac{73}{14} + \frac{125}{14} = \frac{210}{14} - \frac{51}{14}\]
\[k + \frac{52}{14} = \frac{159}{14}\]
\[k = \frac{159}{14} - \frac{52}{14}\]
\[k = \frac{107}{14}\]
\[k = 7\frac{9}{14}\]
Расположим корни уравнений в порядке возрастания:
a = -180, b = 9, k = 7 9/14, x = 50, t = 4 5/23, y = 350
Получается последовательность букв: a, b, k, x, t, y
Имя: Бахтин
Проверим, верно ли высказывание:
\[(522432 : 576 - 32 + 176 \cdot 176) \cdot 400 < 50\]
\[(907 - 32 + 30976) \cdot 400 < 50\]
\[(875 + 30976) \cdot 400 < 50\]
\[31851 \cdot 400 < 50\]
\[12740400 < 50\] - неверно
Ответ: Бахтин