Решение уравнений:
1) \[\sin^2x - \sin x = 0\]
\[\sin x (\sin x - 1) = 0\]
\[\sin x = 0 \quad \text{или} \quad \sin x = 1\]
\[x = \pi n, n \in \mathbb{Z} \quad \text{или} \quad x = \frac{\pi}{2} + 2\pi k, k \in \mathbb{Z}\]
2) \[[10\cos^2x + 3\cos x = 1\]
\[10\cos^2x + 3\cos x - 1 = 0\]
Пусть \(t = \cos x\), тогда:
\[10t^2 + 3t - 1 = 0\]
\[D = 3^2 - 4 \cdot 10 \cdot (-1) = 9 + 40 = 49\]
\[t_1 = \frac{-3 + 7}{20} = \frac{4}{20} = \frac{1}{5}\]
\[t_2 = \frac{-3 - 7}{20} = \frac{-10}{20} = -\frac{1}{2}\]
\[\cos x = \frac{1}{5} \quad \text{или} \quad \cos x = -\frac{1}{2}\]
\[x = \pm \arccos\frac{1}{5} + 2\pi n, n \in \mathbb{Z} \quad \text{или} \quad x = \pm \frac{2\pi}{3} + 2\pi k, k \in \mathbb{Z}\]
3) \[[5\sin x + \cos x = 5\]
Так как \([\sin x \le 1\) и \([\cos x \le 1\), то уравнение может выполняться только при \([\sin x = 1\) и \([\cos x = 0\).
\[5 \cdot 1 + 0 = 5\]
\[x = \frac{\pi}{2} + 2\pi n, n \in \mathbb{Z}\]
4) \[[\sin^4x + \cos^4x = \sin^2 2x - \frac{1}{2}\]
\[((\sin^2x + \cos^2x)^2 - 2\sin^2x \cos^2x) = \sin^2 2x - \frac{1}{2}\]
\[1 - 2\sin^2x \cos^2x = \sin^2 2x - \frac{1}{2}\]
\[1 - \frac{1}{2} \sin^2 2x = \sin^2 2x - \frac{1}{2}\]
\[\frac{3}{2} = \frac{3}{2} \sin^2 2x\]
\[\sin^2 2x = 1\]
\[\sin 2x = \pm 1\]
\[2x = \frac{\pi}{2} + \pi n, n \in \mathbb{Z}\]
\[x = \frac{\pi}{4} + \frac{\pi n}{2}, n \in \mathbb{Z}\]
Ответ: 1) \[x = \pi n, n \in \mathbb{Z}\]; \[x = \frac{\pi}{2} + 2\pi k, k \in \mathbb{Z}\]
2) \[x = \pm \arccos\frac{1}{5} + 2\pi n, n \in \mathbb{Z}\]; \[x = \pm \frac{2\pi}{3} + 2\pi k, k \in \mathbb{Z}\]
3) \[x = \frac{\pi}{2} + 2\pi n, n \in \mathbb{Z}\]
4) \[x = \frac{\pi}{4} + \frac{\pi n}{2}, n \in \mathbb{Z}\]