Решим систему уравнений методом подстановки:
$$ \begin{cases} x^2 - 3y^2 = 4 \\ x + y = 6 \end{cases} $$
$$x = 6 - y$$
$$(6 - y)^2 - 3y^2 = 4$$
$$36 - 12y + y^2 - 3y^2 = 4$$
$$-2y^2 - 12y + 32 = 0$$
$$y^2 + 6y - 16 = 0$$
$$y^2 + 6y - 16 = 0$$
$$D = b^2 - 4ac = 6^2 - 4 imes 1 imes (-16) = 36 + 64 = 100$$
$$y_1 = \frac{-b + \sqrt{D}}{2a} = \frac{-6 + \sqrt{100}}{2 imes 1} = \frac{-6 + 10}{2} = \frac{4}{2} = 2$$
$$y_2 = \frac{-b - \sqrt{D}}{2a} = \frac{-6 - \sqrt{100}}{2 imes 1} = \frac{-6 - 10}{2} = \frac{-16}{2} = -8$$
$$x_1 = 6 - y_1 = 6 - 2 = 4$$
$$x_2 = 6 - y_2 = 6 - (-8) = 6 + 8 = 14$$
$$(4; 2), (14; -8)$$
Ответ: $$(4; 2), (14; -8)$$