Решим пропорции:
1) 2$$\frac{7}{12}$$ = $$\frac{y}{2,2}$$
6$$\frac{1}{5}$$
$$\frac{31}{12}$$ = $$\frac{y}{2,2}$$
$$\frac{31}{5}$$
По основному свойству пропорции:
$$\frac{31}{12}$$\cdot 2,2 = \frac{31}{5} \cdot y$$
$$\frac{31}{12}$$\cdot \frac{22}{10} = \frac{31}{5} \cdot y$$
$$\frac{31 \cdot 11}{6 \cdot 10} = \frac{31}{5} \cdot y$$
$$\frac{341}{60} = \frac{31}{5} \cdot y$$
$$y = \frac{341}{60} : \frac{31}{5}$$
$$y = \frac{341}{60} \cdot \frac{5}{31}$$
$$y = \frac{11 \cdot 31}{12 \cdot 5} \cdot \frac{5}{31}$$
$$y = \frac{11}{12}$$
2) 4$$\frac{3}{4}$$ = $$\frac{1,6}{t}$$
4$$\frac{1}{8}$$
$$\frac{19}{4}$$ = $$\frac{1,6}{t}$$
$$\frac{33}{8}$$
По основному свойству пропорции:
$$\frac{19}{4} \cdot t = 1,6 \cdot \frac{33}{8}$$
$$\frac{19}{4} \cdot t = \frac{16}{10} \cdot \frac{33}{8}$$
$$\frac{19}{4} \cdot t = \frac{2}{10} \cdot 33$$
$$\frac{19}{4} \cdot t = \frac{33}{5}$$
$$t = \frac{33}{5} : \frac{19}{4}$$
$$t = \frac{33}{5} \cdot \frac{4}{19}$$
$$t = \frac{132}{95}$$
$$\frac{132}{95} = 1\frac{37}{95}$$
Ответ: 1) y = $$\frac{11}{12}$$; 2) t = 1$$\frac{37}{95}$$