Решим систему уравнений:
\(\begin{cases} x + y = 7, \\ x^2 + y^2 = 9 + 2xy.\end{cases}\)
\(x = 7 - y\)
\((7 - y)^2 + y^2 = 9 + 2(7 - y)y\)
\(49 - 14y + y^2 + y^2 = 9 + 14y - 2y^2\)
\(2y^2 - 14y + 49 = 9 + 14y - 2y^2\)
\(4y^2 - 28y + 40 = 0\)
\(y^2 - 7y + 10 = 0\)
\(y^2 - 7y + 10 = 0\)
\(D = (-7)^2 - 4 \cdot 1 \cdot 10 = 49 - 40 = 9\)
\(y_1 = \frac{7 + \sqrt{9}}{2} = \frac{7 + 3}{2} = 5\)
\(y_2 = \frac{7 - \sqrt{9}}{2} = \frac{7 - 3}{2} = 2\)
Если \(y_1 = 5\), то \(x_1 = 7 - 5 = 2\)
Если \(y_2 = 2\), то \(x_2 = 7 - 2 = 5\)
Ответ: (2; 5), (5; 2)