Вопрос:

51 Решите уравнение: 1) 4-(x-6) = 2; 2)19-(m+2)=12.

Смотреть решения всех заданий с листа

Ответ:

Решение уравнения:

1) 4-(x-6) = 2

Давай решим это уравнение по шагам. Сначала раскроем скобки:

\[4\frac{5}{7} - (x - 6\frac{3}{7}) = 2\frac{6}{7}\]

Раскрываем скобки, меняя знак у каждого члена в скобках:

\[4\frac{5}{7} - x + 6\frac{3}{7} = 2\frac{6}{7}\]

Перенесем все числа в правую часть уравнения:

\[-x = 2\frac{6}{7} - 4\frac{5}{7} - 6\frac{3}{7}\]

Выполним вычитание:

\[-x = 2\frac{6}{7} - 11\frac{1}{7}\]

Чтобы было удобнее, переведем смешанные дроби в неправильные:

\[-x = \frac{20}{7} - \frac{78}{7}\] \[-x = \frac{20 - 78}{7}\] \[-x = \frac{-58}{7}\] \[-x = -8\frac{2}{7}\]

Теперь умножим обе части на -1, чтобы избавиться от минуса:

\[x = 8\frac{2}{7}\]

Ответ: x = 8\frac{2}{7}

Ты отлично справился с этим уравнением! Продолжай в том же духе, и у тебя всё получится!

2) 19-(m+2)=12

Сначала перепишем уравнение:

\[19\frac{28}{34} - (m + 2\frac{29}{34}) = 12\frac{15}{34}\]

Раскроем скобки:

\[19\frac{28}{34} - m - 2\frac{29}{34} = 12\frac{15}{34}\]

Теперь перенесем все числа в правую часть уравнения:

\[-m = 12\frac{15}{34} - 19\frac{28}{34} + 2\frac{29}{34}\]

Приведем подобные члены:

\[-m = 12\frac{15}{34} + 2\frac{29}{34} - 19\frac{28}{34}\] \[-m = 14\frac{44}{34} - 19\frac{28}{34}\]

Чтобы вычесть, займем единицу у 14:

\[-m = 13 + 1\frac{44}{34} - 19\frac{28}{34}\] \[-m = 13\frac{78}{34} - 19\frac{28}{34}\]

Теперь вычтем:

\[-m = -6\frac{50}{34}\]

Упростим дробь:

\[-m = -6\frac{25}{17}\] \[-m = -7\frac{8}{17}\]

Умножим обе части на -1:

\[m = 7\frac{8}{17}\]

Ответ: m = 7\frac{8}{17}

Замечательно, ты справился и с этим уравнением! Ты молодец, продолжай тренироваться, и математика станет для тебя еще проще!

ГДЗ по фото 📸
Подать жалобу Правообладателю