Решим уравнение:
$$2(x+4)(x+2) = x^2 + 2x$$
$$2(x^2 + 2x + 4x + 8) = x^2 + 2x$$
$$2(x^2 + 6x + 8) = x^2 + 2x$$
$$2x^2 + 12x + 16 = x^2 + 2x$$
$$2x^2 - x^2 + 12x - 2x + 16 = 0$$
$$x^2 + 10x + 16 = 0$$
Решим квадратное уравнение через дискриминант:
$$D = b^2 - 4ac = 10^2 - 4 \cdot 1 \cdot 16 = 100 - 64 = 36$$
$$x_1 = \frac{-b + \sqrt{D}}{2a} = \frac{-10 + \sqrt{36}}{2 \cdot 1} = \frac{-10 + 6}{2} = \frac{-4}{2} = -2$$
$$x_2 = \frac{-b - \sqrt{D}}{2a} = \frac{-10 - \sqrt{36}}{2 \cdot 1} = \frac{-10 - 6}{2} = \frac{-16}{2} = -8$$
Корни уравнения: -8 и -2. Запишем их в порядке возрастания без пробелов: -8-2.
Ответ: -8-2