a) \(\frac{2x - 5}{x + 5} - 4 = 0\)
ОДЗ: \(x
eq -5\)
\(\frac{2x - 5 - 4(x+5)}{x + 5} = 0\)
\(\frac{2x - 5 - 4x - 20}{x + 5} = 0\)
\(\frac{-2x - 25}{x + 5} = 0\)
\(-2x - 25 = 0\)
\(-2x = 25\)
\(x = -12.5\)
б) \(\frac{12}{7 - x} = x\)
ОДЗ: \(x
eq 7\)
\(12 = x(7 - x)\)
\(12 = 7x - x^2\)
\(x^2 - 7x + 12 = 0\)
По теореме Виета:
\(x_1 + x_2 = 7\)
\(x_1 \cdot x_2 = 12\)
\(x_1 = 3\)
\(x_2 = 4\)
в) \(\frac{x^2 - 4}{4x} = \frac{3x - 2}{2x}\)
ОДЗ: \(x
eq 0\)
\(\frac{x^2 - 4}{2} = 3x - 2\)
\(x^2 - 4 = 6x - 4\)
\(x^2 - 6x = 0\)
\(x(x - 6) = 0\)
\(x_1 = 0\) не подходит, т.к. не входит в ОДЗ
\(x_2 = 6\)
г) \(\frac{10}{2x - 3} = x - 1\)
ОДЗ: \(x
eq \frac{3}{2}\)
\(10 = (x - 1)(2x - 3)\)
\(10 = 2x^2 - 3x - 2x + 3\)
\(2x^2 - 5x - 7 = 0\)
\(D = (-5)^2 - 4 \cdot 2 \cdot (-7) = 25 + 56 = 81\)
\(x_1 = \frac{5 + \sqrt{81}}{2 \cdot 2} = \frac{14}{4} = \frac{7}{2} = 3.5\)
\(x_2 = \frac{5 - \sqrt{81}}{2 \cdot 2} = \frac{-4}{4} = -1\)
д) \(\frac{8}{x} = 3x + 2\)
ОДЗ: \(x
eq 0\)
\(8 = x(3x + 2)\)
\(8 = 3x^2 + 2x\)
\(3x^2 + 2x - 8 = 0\)
\(D = 2^2 - 4 \cdot 3 \cdot (-8) = 4 + 96 = 100\)
\(x_1 = \frac{-2 + \sqrt{100}}{2 \cdot 3} = \frac{8}{6} = \frac{4}{3}\)
\(x_2 = \frac{-2 - \sqrt{100}}{2 \cdot 3} = \frac{-12}{6} = -2\)
е) \(\frac{x^2 + 4x}{x+2} = \frac{2x}{3}\)
ОДЗ: \(x
eq -2\)
\(3(x^2 + 4x) = 2x(x+2)\)
\(3x^2 + 12x = 2x^2 + 4x\)
\(x^2 + 8x = 0\)
\(x(x + 8) = 0\)
\(x_1 = 0\)
\(x_2 = -8\)
ж) \(\frac{2x^2 - 5x + 3}{10x - 5} = 0\)
ОДЗ: \(x
eq \frac{1}{2}\)
\(2x^2 - 5x + 3 = 0\)
\(D = (-5)^2 - 4 \cdot 2 \cdot 3 = 25 - 24 = 1\)
\(x_1 = \frac{5 + \sqrt{1}}{2 \cdot 2} = \frac{6}{4} = \frac{3}{2}\)
\(x_2 = \frac{5 - \sqrt{1}}{2 \cdot 2} = \frac{4}{4} = 1\)
\(x_1 = \frac{3}{2}\) не подходит, т.к. не входит в ОДЗ
з) \(\frac{4x^3 - 9x}{x + 1,5} = 0\)
ОДЗ: \(x
eq -1.5\)
\(4x^3 - 9x = 0\)
\(x(4x^2 - 9) = 0\)
\(x_1 = 0\)
\(4x^2 - 9 = 0\)
\(4x^2 = 9\)
\(x^2 = \frac{9}{4}\)
\(x_2 = \frac{3}{2}\)
\(x_3 = -\frac{3}{2}\) не подходит, т.к. не входит в ОДЗ
Ответ: a) \(x=-12.5\); б) \(x_1=3, x_2=4\); в) \(x=6\); г) \(x_1=3.5, x_2=-1\); д) \(x_1=\frac{4}{3}, x_2=-2\); е) \(x_1=0, x_2=-8\); ж) \(x=1\); з) \(x_1=0, x_2=\frac{3}{2}\)