$$\frac{x}{2+3x} - \frac{5}{3x-2} = \frac{15x+10}{4-9x^2}$$
$$\frac{x}{2+3x} + \frac{5}{2-3x} = \frac{15x+10}{(2-3x)(2+3x)}$$
$$\frac{x(2-3x)+5(2+3x)}{(2+3x)(2-3x)} = \frac{15x+10}{(2-3x)(2+3x)}$$
$$2x-3x^2+10+15x=15x+10$$
$$-3x^2+2x=0$$
$$x(-3x+2)=0$$
$$x_1=0$$
$$x_2=\frac{2}{3}$$
Проверка:
$$x_1=0$$
$$\frac{0}{2} - \frac{5}{-2} = \frac{10}{4}$$
$$\frac{5}{2} = \frac{5}{2}$$
$$x_2=\frac{2}{3}$$
$$\frac{\frac{2}{3}}{2+3\cdot\frac{2}{3}} - \frac{5}{3\cdot\frac{2}{3}-2} = \frac{15\cdot\frac{2}{3}+10}{4-9(\frac{2}{3})^2}$$
$$\frac{\frac{2}{3}}{4} - \frac{5}{0} = \frac{20}{0}$$
Ответ: 0