Решим каждое уравнение, используя формулу дискриминанта.
a) 8x² - 14x + 5 = 0;
D = (-14)² - 4 * 8 * 5 = 196 - 160 = 36;
x₁ = (14 + √36) / (2 * 8) = (14 + 6) / 16 = 20 / 16 = 5 / 4;
x₂ = (14 - √36) / (2 * 8) = (14 - 6) / 16 = 8 / 16 = 1 / 2.
Ответ: x₁ = 5/4, x₂ = 1/2
б) 12t² + 16t - 3 = 0;
D = (16)² - 4 * 12 * (-3) = 256 + 144 = 400;
t₁ = (-16 + √400) / (2 * 12) = (-16 + 20) / 24 = 4 / 24 = 1 / 6;
t₂ = (-16 - √400) / (2 * 12) = (-16 - 20) / 24 = -36 / 24 = -3 / 2.
Ответ: t₁ = 1/6, t₂ = -3/2
в) 4p² + 4p + 1 = 0;
D = (4)² - 4 * 4 * 1 = 16 - 16 = 0;
p = (-4 + √0) / (2 * 4) = -4 / 8 = -1 / 2.
Ответ: p = -1/2
г) x² - 8x - 84 = 0;
D = (-8)² - 4 * 1 * (-84) = 64 + 336 = 400;
x₁ = (8 + √400) / (2 * 1) = (8 + 20) / 2 = 28 / 2 = 14;
x₂ = (8 - √400) / (2 * 1) = (8 - 20) / 2 = -12 / 2 = -6.
Ответ: x₁ = 14, x₂ = -6