Для решения системы уравнений графическим способом необходимо построить графики обоих уравнений и найти точки их пересечения. Координаты этих точек будут являться решениями системы.
1) xy = 4
Выразим y через x: $$y = \frac{4}{x}$$. Это гипербола.
y = -3x - 1 – это линейная функция, графиком которой является прямая.
Построим графики этих функций и найдем точки пересечения.
2) \( \begin{cases} y=(x-1)^2 \\ y = -3x-2=0 \end{cases} \)
y = (x - 1)² – это парабола с вершиной в точке (1; 0).
y = -3x - 2 = 0
Выразим y: y = -3x - 2. Это линейная функция, графиком которой является прямая.
Построим графики этих функций и найдем точки пересечения.
К сожалению, без графика сложно указать точные координаты точек пересечения. Для более точного решения рекомендуется построить графики на координатной плоскости.
Ответ: Решение можно найти графическим способом, построив графики функций и определив точки их пересечения.