1. а) Таблица частот:
| Значение | Количество повторений |
|---|---|
| 2 | 2 |
| 3 | 2 |
| 5 | 4 |
| 7 | 2 |
б) Относительная частота значения 5:
Всего значений в массиве: 10
Значение 5 встречается 4 раза.
Относительная частота = $$ \frac{4}{10} = 0.4 $$.
В процентах: $$0.4 \cdot 100 \% = 40 \%$$.
в) Проверка суммы всех относительных частот:
Частота значения 2: 2 раза, относительная частота $$ \frac{2}{10} = 0.2 $$.
Частота значения 3: 2 раза, относительная частота $$ \frac{2}{10} = 0.2 $$.
Частота значения 5: 4 раза, относительная частота $$ \frac{4}{10} = 0.4 $$.
Частота значения 7: 2 раза, относительная частота $$ \frac{2}{10} = 0.2 $$.
Сумма относительных частот: $$ 0.2 + 0.2 + 0.4 + 0.2 = 1 $$.
Сумма всех относительных частот равна 1.
Ответ: а) таблица частот выше, б) 0.4 или 40%, в) сумма относительных частот равна 1.