Разберем каждое уравнение по порядку:
- $$sin(3x) = 0$$
$$3x = \pi n, n \in Z$$
$$x = \frac{\pi n}{3}, n \in Z$$
Ответ: $$x = \frac{\pi n}{3}, n \in Z$$
- $$cos(4x) = 1$$
$$4x = 2\pi n, n \in Z$$
$$x = \frac{\pi n}{2}, n \in Z$$
Ответ: $$x = \frac{\pi n}{2}, n \in Z$$
- $$tg(\frac{x}{2}) = -1$$
$$\frac{x}{2} = -\frac{\pi}{4} + \pi n, n \in Z$$
$$x = -\frac{\pi}{2} + 2\pi n, n \in Z$$
Ответ: $$x = -\frac{\pi}{2} + 2\pi n, n \in Z$$
- $$2sin(\frac{x}{3}) = 1$$
$$sin(\frac{x}{3}) = \frac{1}{2}$$
$$\frac{x}{3} = (-1)^n \frac{\pi}{6} + \pi n, n \in Z$$
$$x = (-1)^n \frac{\pi}{2} + 3\pi n, n \in Z$$
Ответ: $$x = (-1)^n \frac{\pi}{2} + 3\pi n, n \in Z$$
- $$cos(5x) + 1 = 0$$
$$cos(5x) = -1$$
$$5x = \pi + 2\pi n, n \in Z$$
$$x = \frac{\pi}{5} + \frac{2\pi n}{5}, n \in Z$$
Ответ: $$x = \frac{\pi}{5} + \frac{2\pi n}{5}, n \in Z$$
- $$3tg(x + \frac{\pi}{4}) = \sqrt{3}$$
$$tg(x + \frac{\pi}{4}) = \frac{\sqrt{3}}{3}$$
$$x + \frac{\pi}{4} = \frac{\pi}{6} + \pi n, n \in Z$$
$$x = \frac{\pi}{6} - \frac{\pi}{4} + \pi n, n \in Z$$
$$x = -\frac{\pi}{12} + \pi n, n \in Z$$
Ответ: $$x = -\frac{\pi}{12} + \pi n, n \in Z$$
- $$ctg(\frac{2x}{3}) = 0$$
$$\frac{2x}{3} = \frac{\pi}{2} + \pi n, n \in Z$$
$$2x = \frac{3\pi}{2} + 3\pi n, n \in Z$$
$$x = \frac{3\pi}{4} + \frac{3\pi n}{2}, n \in Z$$
Ответ: $$x = \frac{3\pi}{4} + \frac{3\pi n}{2}, n \in Z$$
- $$1 - sin(\frac{x}{3}) = 0$$
$$sin(\frac{x}{3}) = 1$$
$$\frac{x}{3} = \frac{\pi}{2} + 2\pi n, n \in Z$$
$$x = \frac{3\pi}{2} + 6\pi n, n \in Z$$
Ответ: $$x = \frac{3\pi}{2} + 6\pi n, n \in Z$$
- $$\sqrt{3} - cos(2x - \frac{\pi}{3}) = 0$$
$$cos(2x - \frac{\pi}{3}) = \sqrt{3}$$
Так как $$\sqrt{3} > 1$$, то уравнение не имеет решений.
Ответ: нет решений
- $$sin(2x - \frac{\pi}{8}) = \frac{1}{3}$$
$$2x - \frac{\pi}{8} = (-1)^n arcsin(\frac{1}{3}) + \pi n, n \in Z$$
$$2x = \frac{\pi}{8} + (-1)^n arcsin(\frac{1}{3}) + \pi n, n \in Z$$
$$x = \frac{\pi}{16} + (-1)^n \frac{1}{2} arcsin(\frac{1}{3}) + \frac{\pi n}{2}, n \in Z$$
Ответ: $$x = \frac{\pi}{16} + (-1)^n \frac{1}{2} arcsin(\frac{1}{3}) + \frac{\pi n}{2}, n \in Z$$
- $$sin^2 x = 1$$
$$sin x = \pm 1$$
$$x = \frac{\pi}{2} + \pi n, n \in Z$$
Ответ: $$x = \frac{\pi}{2} + \pi n, n \in Z$$
- $$sin(x - \frac{\pi}{4}) = 0$$
$$x - \frac{\pi}{4} = \pi n, n \in Z$$
$$x = \frac{\pi}{4} + \pi n, n \in Z$$
Ответ: $$x = \frac{\pi}{4} + \pi n, n \in Z$$
- $$cos(\frac{x}{2}) = 0$$
$$\frac{x}{2} = \frac{\pi}{2} + \pi n, n \in Z$$
$$x = \pi + 2\pi n, n \in Z$$
Ответ: $$x = \pi + 2\pi n, n \in Z$$
- $$sin(x - \frac{\pi}{3}) = 1$$
$$x - \frac{\pi}{3} = \frac{\pi}{2} + 2\pi n, n \in Z$$
$$x = \frac{5\pi}{6} + 2\pi n, n \in Z$$
Ответ: $$x = \frac{5\pi}{6} + 2\pi n, n \in Z$$
- $$sin(4x) = -1$$
$$4x = -\frac{\pi}{2} + 2\pi n, n \in Z$$
$$x = -\frac{\pi}{8} + \frac{\pi n}{2}, n \in Z$$
Ответ: $$x = -\frac{\pi}{8} + \frac{\pi n}{2}, n \in Z$$
- $$tg(\frac{\pi}{3} - x) = 0$$
$$\frac{\pi}{3} - x = \pi n, n \in Z$$
$$x = \frac{\pi}{3} - \pi n, n \in Z$$
Ответ: $$x = \frac{\pi}{3} - \pi n, n \in Z$$
- $$sin(2x) = \frac{1}{\sqrt{2}}$$
$$2x = (-1)^n \frac{\pi}{4} + \pi n, n \in Z$$
$$x = (-1)^n \frac{\pi}{8} + \frac{\pi n}{2}, n \in Z$$
Ответ: $$x = (-1)^n \frac{\pi}{8} + \frac{\pi n}{2}, n \in Z$$
- $$cos(x) = -\frac{\sqrt{2}}{2}$$
$$x = \pm \frac{3\pi}{4} + 2\pi n, n \in Z$$
Ответ: $$x = \pm \frac{3\pi}{4} + 2\pi n, n \in Z$$
- $$cos(2x) = -\frac{1}{2}$$
$$2x = \pm \frac{2\pi}{3} + 2\pi n, n \in Z$$
$$x = \pm \frac{\pi}{3} + \pi n, n \in Z$$
Ответ: $$x = \pm \frac{\pi}{3} + \pi n, n \in Z$$
- $$cos(x - \pi) = -1$$
$$x - \pi = \pi + 2\pi n, n \in Z$$
$$x = 2\pi + 2\pi n, n \in Z$$
$$x = 2\pi(1 + n), n \in Z$$
Ответ: $$x = 2\pi(1 + n), n \in Z$$
- $$sin(x - 2\pi) + cos(x - \frac{\pi}{2}) = 1$$
$$sin(x) + sin(x) = 1$$
$$2sin(x) = 1$$
$$sin(x) = \frac{1}{2}$$
$$x = (-1)^n \frac{\pi}{6} + \pi n, n \in Z$$
Ответ: $$x = (-1)^n \frac{\pi}{6} + \pi n, n \in Z$$
- $$\frac{1}{2}sin(2x) = -\frac{\sqrt{3}}{4}$$
$$sin(2x) = -\frac{\sqrt{3}}{2}$$
$$2x = (-1)^n(-\frac{\pi}{3}) + \pi n, n \in Z$$
$$x = (-1)^n(-\frac{\pi}{6}) + \frac{\pi n}{2}, n \in Z$$
Ответ: $$x = (-1)^n(-\frac{\pi}{6}) + \frac{\pi n}{2}, n \in Z$$
- $$3sin(5x) = 0$$
$$sin(5x) = 0$$
$$5x = \pi n, n \in Z$$
$$x = \frac{\pi n}{5}, n \in Z$$
Ответ: $$x = \frac{\pi n}{5}, n \in Z$$
- $$1 - cos(\frac{x + \pi}{3}) = \frac{1}{2}$$
$$cos(\frac{x + \pi}{3}) = \frac{1}{2}$$
$$\frac{x + \pi}{3} = \pm \frac{\pi}{3} + 2\pi n, n \in Z$$
$$x + \pi = \pm \pi + 6\pi n, n \in Z$$
$$x = -\pi \pm \pi + 6\pi n, n \in Z$$
- $$x = -\pi + \pi + 6\pi n, n \in Z$$
$$x = 6\pi n, n \in Z$$
- $$x = -\pi - \pi + 6\pi n, n \in Z$$
$$x = -2\pi + 6\pi n, n \in Z$$
Ответ: $$x = 6\pi n, n \in Z$$; $$x = -2\pi + 6\pi n, n \in Z$$
- $$cos(2x) = 0.1$$
$$2x = \pm arccos(0.1) + 2 \pi n, n \in Z$$
$$x = \pm \frac{arccos(0.1)}{2} + \pi n, n \in Z$$
Ответ: $$x = \pm \frac{arccos(0.1)}{2} + \pi n, n \in Z$$
- $$tg(3x) = 4$$
$$3x = arctg(4) + \pi n, n \in Z$$
$$x = \frac{arctg(4)}{3} + \frac{\pi n}{3}, n \in Z$$
Ответ: $$x = \frac{arctg(4)}{3} + \frac{\pi n}{3}, n \in Z$$
- $$tg(\frac{\pi}{3} - x) = -1$$
$$\frac{\pi}{3} - x = -\frac{\pi}{4} + \pi n, n \in Z$$
$$x = \frac{\pi}{3} + \frac{\pi}{4} - \pi n, n \in Z$$
$$x = \frac{7\pi}{12} - \pi n, n \in Z$$
Ответ: $$x = \frac{7\pi}{12} - \pi n, n \in Z$$
- $$cos(x) \cdot cos(2x) = 0$$
$$cos(x) = 0$$ или $$cos(2x) = 0$$
- $$cos(x) = 0$$
$$x = \frac{\pi}{2} + \pi n, n \in Z$$
- $$cos(2x) = 0$$
$$2x = \frac{\pi}{2} + \pi n, n \in Z$$
$$x = \frac{\pi}{4} + \frac{\pi n}{2}, n \in Z$$
Ответ: $$x = \frac{\pi}{2} + \pi n, n \in Z$$; $$x = \frac{\pi}{4} + \frac{\pi n}{2}, n \in Z$$
- $$sin(x + \frac{\pi}{4}) \cdot sin(x - \frac{\pi}{4}) = 0$$
$$sin(x + \frac{\pi}{4}) = 0$$ или $$sin(x - \frac{\pi}{4}) = 0$$
- $$sin(x + \frac{\pi}{4}) = 0$$
$$x + \frac{\pi}{4} = \pi n, n \in Z$$
$$x = -\frac{\pi}{4} + \pi n, n \in Z$$
- $$sin(x - \frac{\pi}{4}) = 0$$
$$x - \frac{\pi}{4} = \pi n, n \in Z$$
$$x = \frac{\pi}{4} + \pi n, n \in Z$$
Ответ: $$x = -\frac{\pi}{4} + \pi n, n \in Z$$; $$x = \frac{\pi}{4} + \pi n, n \in Z$$
- $$2cos^2 x =$$ Не хватает правой части уравнения.