Для решения задачи необходимо рассмотреть возможные варианты составления четырехзначных четных чисел из цифр 8, 7, 3, 0.
Четное число должно оканчиваться на четную цифру, в данном случае это 8 или 0.
Рассмотрим случай, когда число оканчивается на 0:
- На первое место можно поставить любую из трех цифр: 8, 7 или 3 (ноль нельзя, иначе число не будет четырехзначным).
- На второе место можно поставить любую из оставшихся трех цифр.
- На третье место можно поставить любую из оставшихся двух цифр.
- На четвертое место ставим 0.
Количество таких чисел равно 3 × 3 × 2 = 18.
Рассмотрим случай, когда число оканчивается на 8:
- На первое место можно поставить любую из двух цифр: 7 или 3 (ноль и 8 нельзя).
- На второе место можно поставить любую из оставшихся трех цифр, включая 0.
- На третье место можно поставить любую из оставшихся двух цифр.
- На четвертое место ставим 8.
Количество таких чисел равно 2 × 3 × 2 = 12.
Сложим количество чисел, оканчивающихся на 0 и на 8: 18 + 12 = 30.
Ответ: 30