Давай помогу тебе сократить дроби. Будем работать аккуратно и внимательно.
Вариант 1
-
\[\frac{36}{81} = \frac{4 \times 9}{9 \times 9} = \frac{4}{9}\]
-
\[\frac{8}{34} = \frac{2 \times 4}{2 \times 17} = \frac{4}{17}\]
-
\[\frac{6}{26} = \frac{2 \times 3}{2 \times 13} = \frac{3}{13}\]
-
\[\frac{24}{68} = \frac{4 \times 6}{4 \times 17} = \frac{6}{17}\]
-
\[\frac{48}{54} = \frac{6 \times 8}{6 \times 9} = \frac{8}{9}\]
-
\[\frac{42}{49} = \frac{7 \times 6}{7 \times 7} = \frac{6}{7}\]
-
\[\frac{30}{54} = \frac{6 \times 5}{6 \times 9} = \frac{5}{9}\]
-
\[\frac{35}{56} = \frac{7 \times 5}{7 \times 8} = \frac{5}{8}\]
-
\[\frac{30}{75} = \frac{15 \times 2}{15 \times 5} = \frac{2}{5}\]
-
\[\frac{8}{72} = \frac{8 \times 1}{8 \times 9} = \frac{1}{9}\]
-
\[\frac{36}{81} = \frac{9 \times 4}{9 \times 9} = \frac{4}{9}\]
-
\[\frac{60}{96} = \frac{12 \times 5}{12 \times 8} = \frac{5}{8}\]
-
\[\frac{49}{91} = \frac{7 \times 7}{7 \times 13} = \frac{7}{13}\]
-
\[\frac{24}{32} = \frac{8 \times 3}{8 \times 4} = \frac{3}{4}\]
-
\[\frac{4}{6} = \frac{2 \times 2}{2 \times 3} = \frac{2}{3}\]
Вариант 2
-
\[\frac{12}{14} = \frac{2 \times 6}{2 \times 7} = \frac{6}{7}\]
-
\[\frac{15}{65} = \frac{5 \times 3}{5 \times 13} = \frac{3}{13}\]
-
\[\frac{12}{16} = \frac{4 \times 3}{4 \times 4} = \frac{3}{4}\]
-
\[\frac{16}{19} = \frac{16}{19}\]
-
\[\frac{37}{16} = \frac{37}{16}\]
-
\[\frac{24}{18} = \frac{6 \times 4}{6 \times 3} = \frac{4}{3}\]
-
\[\frac{33}{36} = \frac{3 \times 11}{3 \times 12} = \frac{11}{12}\]
-
\[\frac{36}{81} = \frac{9 \times 4}{9 \times 9} = \frac{4}{9}\]
-
\[\frac{9}{37} = \frac{9}{37}\]
-
\[\frac{7}{77} = \frac{7 \times 1}{7 \times 11} = \frac{1}{11}\]
-
\[\frac{4}{33} = \frac{4}{33}\]
-
\[\frac{12}{48} = \frac{12 \times 1}{12 \times 4} = \frac{1}{4}\]
-
\[\frac{18}{54} = \frac{18 \times 1}{18 \times 3} = \frac{1}{3}\]
-
\[\frac{5}{40} = \frac{5 \times 1}{5 \times 8} = \frac{1}{8}\]
-
\[\frac{16}{32} = \frac{16 \times 1}{16 \times 2} = \frac{1}{2}\]
-
\[\frac{63}{84} = \frac{21 \times 3}{21 \times 4} = \frac{3}{4}\]
Вариант 3
-
\[\frac{15}{20} = \frac{5 \times 3}{5 \times 4} = \frac{3}{4}\]
-
\[\frac{2}{20} = \frac{2 \times 1}{2 \times 10} = \frac{1}{10}\]
-
\[\frac{3}{9} = \frac{3 \times 1}{3 \times 3} = \frac{1}{3}\]
-
\[\frac{14}{51} = \frac{14}{51}\]
-
\[\frac{27}{57} = \frac{3 \times 9}{3 \times 19} = \frac{9}{19}\]
-
\[\frac{28}{70} = \frac{14 \times 2}{14 \times 5} = \frac{2}{5}\]
-
\[\frac{45}{63} = \frac{9 \times 5}{9 \times 7} = \frac{5}{7}\]
-
\[\frac{18}{45} = \frac{9 \times 2}{9 \times 5} = \frac{2}{5}\]
-
\[\frac{28}{42} = \frac{14 \times 2}{14 \times 3} = \frac{2}{3}\]
-
\[\frac{52}{91} = \frac{13 \times 4}{13 \times 7} = \frac{4}{7}\]
-
\[\frac{42}{49} = \frac{7 \times 6}{7 \times 7} = \frac{6}{7}\]
-
\[\frac{34}{85} = \frac{17 \times 2}{17 \times 5} = \frac{2}{5}\]
-
\[\frac{27}{57} = \frac{3 \times 9}{3 \times 19} = \frac{9}{19}\]
-
\[\frac{18}{51} = \frac{3 \times 6}{3 \times 17} = \frac{6}{17}\]
-
\[\frac{51}{68} = \frac{17 \times 3}{17 \times 4} = \frac{3}{4}\]
Ответ: Выше приведены сокращенные дроби для каждого варианта.
Молодец! Ты хорошо поработал над сокращением дробей. Продолжай в том же духе, и у тебя всё получится!