Для сокращения дробей необходимо разложить числитель и знаменатель на простые множители и сократить одинаковые множители.
4.5/25.6 = (4 × 5)/(25 × 6) = (2 × 2 × 5)/(5 × 5 × 2 × 3) = (2 × 2 × 5)/(5 × 5 × 2 × 3) = 2/(5 × 3) = 2/15
Ответ: 2/15
8.13/39.2 = (8 × 13)/(39 × 2) = (2 × 2 × 2 × 13)/(3 × 13 × 2) = (2 × 2 × 2 × 13)/(3 × 13 × 2) = (2 × 2)/3 = 4/3
Ответ: 4/3
3.38/19.27 = (3 × 38)/(19 × 27) = (3 × 2 × 19)/(19 × 3 × 3 × 3) = (3 × 2 × 19)/(19 × 3 × 3 × 3) = 2/(3 × 3 × 3) = 2/27
Ответ: 2/27
(2 × 3 × 4 × 5)/(4 × 5 × 6 × 7) = (2 × 3 × 4 × 5)/(4 × 5 × 2 × 3 × 7) = (2 × 3 × 4 × 5)/(4 × 5 × 2 × 3 × 7) = 1/7
Ответ: 1/7
(6 × 7 × 8 × 9 × 10)/(7 × 9 × 11 × 12) = (6 × 7 × 8 × 9 × 10)/(7 × 9 × 11 × 6 × 2) = (6 × 7 × 8 × 9 × 10)/(7 × 9 × 11 × 6 × 2) = (8 × 10)/(11 × 2) = (4 × 2 × 10)/(11 × 2) = (4 × 2 × 10)/(11 × 2) = (4 × 10)/11 = 40/11
Ответ: 40/11
(3 × 16 × 8 × 3)/27 = (3 × 16 × 8 × 3)/(3 × 3 × 3) = (3 × 16 × 8 × 3)/(3 × 3 × 3) = (16 × 8)/3 = (2 × 2 × 2 × 2 × 2 × 2)/(3) = 128/3
Ответ: 128/3
(9 × 13 + 9 × 2)/(54 × 13) = (9 × (13 + 2))/(54 × 13) = (9 × 15)/(6 × 9 × 13) = (9 × 3 × 5)/(6 × 9 × 13) = (3 × 5)/(6 × 13) = (3 × 5)/(2 × 3 × 13) = 5/(2 × 13) = 5/26
Ответ: 5/26
(27 × 15 - 7 × 27)/(9 × 15 - 9 × 11) = (27 × (15 - 7))/(9 × (15 - 11)) = (27 × 8)/(9 × 4) = (3 × 9 × 2 × 4)/(9 × 4) = (3 × 9 × 2 × 4)/(9 × 4) = (3 × 2) = 6
Ответ: 6
(24 × 2 + 6 × 24)/(60 × 7 - 5 × 60) = (24 × (2 + 6))/(60 × (7 - 5)) = (24 × 8)/(60 × 2) = (2 × 12 × 8)/(2 × 30) = (2 × 12 × 8)/(2 × 30) = (12 × 8)/30 = (4 × 3 × 8)/(10 × 3) = (4 × 3 × 8)/(10 × 3) = (4 × 8)/10 = 32/10 = 16/5
Ответ: 16/5