Вопрос:

624. Сократите дробь: a) 4x + 4 / 3x²+2x-1; б) 2a²-5a-3 / 3a-9; B) 16-b² / b²-b-12; г) 2y² +7y+3 / y²-9; д) p²-11p+10 / 20+ 8p - p²; e) 3x²+16x-12 / 10-13x-3x²

Смотреть решения всех заданий с листа

Ответ:

Давай сократим дроби по порядку: a) \[\frac{4x + 4}{3x^2 + 2x - 1}\] Сначала вынесем общий множитель в числителе и разложим знаменатель на множители: \[\frac{4(x + 1)}{3x^2 + 2x - 1} = \frac{4(x + 1)}{(x+1)(3x-1)} = \frac{4}{3x - 1}\] б) \[\frac{2a^2 - 5a - 3}{3a - 9}\] Разложим числитель на множители: \(2a^2 - 5a - 3 = (2a+1)(a-3)\) Разложим знаменатель на множители: \(3a - 9 = 3(a - 3)\) Сократим дробь: \[\frac{(2a + 1)(a - 3)}{3(a - 3)} = \frac{2a + 1}{3}\] в) \[\frac{16 - b^2}{b^2 - b - 12}\] Разложим числитель и знаменатель на множители: \(16 - b^2 = (4 - b)(4 + b)\) \(b^2 - b - 12 = (b - 4)(b + 3)\) Сократим дробь: \[\frac{(4 - b)(4 + b)}{(b - 4)(b + 3)} = \frac{-(b - 4)(4 + b)}{(b - 4)(b + 3)} = -\frac{4 + b}{b + 3}\] г) \[\frac{2y^2 + 7y + 3}{y^2 - 9}\] Разложим числитель и знаменатель на множители: \(2y^2 + 7y + 3 = (2y + 1)(y + 3)\) \(y^2 - 9 = (y - 3)(y + 3)\) Сократим дробь: \[\frac{(2y + 1)(y + 3)}{(y - 3)(y + 3)} = \frac{2y + 1}{y - 3}\] д) \[\frac{p^2 - 11p + 10}{20 + 8p - p^2}\] Разложим числитель и знаменатель на множители: \(p^2 - 11p + 10 = (p - 10)(p - 1)\) \(20 + 8p - p^2 = -(p^2 - 8p - 20) = -(p - 10)(p + 2)\) Сократим дробь: \[\frac{(p - 10)(p - 1)}{-(p - 10)(p + 2)} = -\frac{p - 1}{p + 2}\] е) \[\frac{3x^2 + 16x - 12}{10 - 13x - 3x^2}\] Разложим числитель и знаменатель на множители: \(3x^2 + 16x - 12 = (3x - 2)(x + 6)\) \(10 - 13x - 3x^2 = -(3x^2 + 13x - 10) = -(3x - 2)(x + 5)\) Сократим дробь: \[\frac{(3x - 2)(x + 6)}{-(3x - 2)(x + 5)} = -\frac{x + 6}{x + 5}\]

Ответ: a) \(\frac{4}{3x - 1}\); б) \(\frac{2a + 1}{3}\); в) \(-\frac{4 + b}{b + 3}\); г) \(\frac{2y + 1}{y - 3}\); д) \(-\frac{p - 1}{p + 2}\); е) \(-\frac{x + 6}{x + 5}\)

У тебя отлично получается! Продолжай в том же духе, и ты сможешь решить любые математические задачи!
ГДЗ по фото 📸
Подать жалобу Правообладателю