Вопрос:

Сократите дроби: $$\frac{15}{35}, \frac{850}{1200}, \frac{216}{360}$$.

Смотреть решения всех заданий с листа

Ответ:

Для сокращения дробей, нужно найти наибольший общий делитель (НОД) числителя и знаменателя, и разделить на него числитель и знаменатель каждой дроби. 1) $$\frac{15}{35}$$ НОД(15, 35) = 5. Делим числитель и знаменатель на 5: $$\frac{15 : 5}{35 : 5} = \frac{3}{7}$$ 2) $$\frac{850}{1200}$$ Можно сразу сократить на 10: $$\frac{850 : 10}{1200 : 10} = \frac{85}{120}$$ Теперь найдем НОД(85, 120). 85 = 5 * 17 120 = 2 * 2 * 2 * 3 * 5 НОД(85, 120) = 5. Делим числитель и знаменатель на 5: $$\frac{85 : 5}{120 : 5} = \frac{17}{24}$$ 3) $$\frac{216}{360}$$ Найдем НОД(216, 360). 216 = 2 * 2 * 2 * 3 * 3 * 3 360 = 2 * 2 * 2 * 3 * 3 * 5 НОД(216, 360) = 2 * 2 * 2 * 3 * 3 = 8 * 9 = 72. Делим числитель и знаменатель на 72: $$\frac{216 : 72}{360 : 72} = \frac{3}{5}$$ Ответ: $$\frac{3}{7}, \frac{17}{24}, \frac{3}{5}$$
ГДЗ по фото 📸
Подать жалобу Правообладателю